Plant Systematics and Evolution

, Volume 202, Issue 1–2, pp 37–63 | Cite as

Fluorescent chromosome banding in the cultivated species ofCapsicum (Solanaceae)

  • Eduardo A. Moscone
  • Maria Lambrou
  • Friedrich Ehrendorfer


Fluorochrome chromosome banding is applied for the first time to 15 samples of five cultivatedCapsicum species, all with 2n = 24, and allows a detailed analysis of the karyotypes (Tables 2–3, Fig. 8). Banding patterns differ between cytotypes, species and groups, reflecting the dynamics of chromosomal differentiation and evolutionary divergence. Taxa have from 1 to 4 NOR-bearing satellited chromosome pairs and exhibit increasing numbers of terminal (rarely intercalary and indistinct centromeric) heterochromatic fluorescent bands. Amounts of heterochromatin (expressed in % of karyotype length) increase from the group withC. annuum (1.80–2.88),C. chinense (3.91–5.52), andC. frutescens (5.55) toC. baccatum (7.30–7.56), and finally toC. pubescens (18.95). In all taxa CMA+DAPI—(GC-rich) constitutive heterochromatin dominates, onlyC. pubescens has an additional CMAo DAPI+ (AT-rich) band. The fluorochrome bands generally (but not completely) correspond to the Giemsa C-bands. Structural heterozygosity can be demonstrated but is not prominent. The independent origin of at least three evolutionary lines leading to the cultivated taxa ofCapsicum is supported.

Key words

Solanaceae Capsicum Karyosystematics fluorochrome banding heterochromatin differentiation karyotype evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battaglia, E., 1955: Chromosome morphology and terminology. — Caryologia8: 179–187.Google Scholar
  2. Bennett, M. D., Smith, J. B., 1976: Nuclear DNA amounts in angiosperms. — Philos. Trans., Ser. B274: 227–274.Google Scholar
  3. Berg, C., Greilhuber, J., 1992: Cold-sensitive chromosome regions and their relation to constitutive heterochromatin inCestrum parqui (Solanaceae). — Genome35: 921–930.Google Scholar
  4. —, 1993a: Cold-sensitive chromosome regions and heterochromatin inCestrum (Solanaceae):C. strigillatum, C. fasciculatum, andC. elegans. — Pl. Syst. Evol.185: 133–151.Google Scholar
  5. —, 1993b: Cold-sensitive chromosome regions and heterochromatin inCestrum aurantiacum (Solanaceae). — Pl. Syst. Evol.185: 259–273.Google Scholar
  6. Carluccio, F., Saccardo, F., 1977: Karyotype studies inCapsicum. — InPochard, E., (Ed.):Capsicum 77. — Comptes Rendues 3ème Congrès Eucarpia Piment, pp. 39–50. — Avignon-Montfavet: Institut National de la Recherche Agronomique.Google Scholar
  7. Chennaveeraiah, M. S., Habib, A. F., 1966: Recent advances in the cytogenetics of capsicums. — In: Proceedings of the Autumn School in Botany, Mahabaleshwar 1966, pp. 69–90.Google Scholar
  8. Eshbaugh, W. H., 1970: A biosystematic and evolutionary study ofCapsicum baccatum (Solanaceae). — Brittonia22: 31–43.Google Scholar
  9. —, 1979: Biosystematic and evolutionary study of theCapsicum pubescens complex. — Nat. Geogr. Soc. Res. Rep.1970: 143–162.Google Scholar
  10. —, 1983: The genusCapsicum (Solanaceae) in Africa. — Bothalia14: 845–848.Google Scholar
  11. —, 1993: Peppers: history and exploitation of a serendipitous new crop discovery. — InJanick, J., Simon, J. E., (Eds): New crops, pp. 132–139. — New York: Wiley.Google Scholar
  12. —, 1983: The origin and evolution of domesticatedCapsicum species. — J. Ethnobiol.3: 49–54.Google Scholar
  13. Greilhuber, J., 1982: Trends in der Chromosomenevolution vonScilla (Liliaceae). — Stapfia10: 11–51.Google Scholar
  14. —, 1984: Chromosomal evidence in taxonomy. — InHeywood, V. H., Moore, D. M., (Eds): Current concepts in plant taxonomy. — Syst. Assoc. Special Vol.25: 157–180. — London: Academic Press.Google Scholar
  15. —, 1976: C-banded karyotypes in theScilla hohenackeri group,S. persica, andPuschkinia (Liliaceae). — Pl. Syst. Evol.126: 149–188.Google Scholar
  16. —, 1978: Quantitative analyses of C-banded karyotypes, and systematics in the cultivated species of theScilla siberica group (Liliaceae). — Pl. Syst. Evol.129: 63–109.Google Scholar
  17. Heiser, C. B., Smith, P. G., 1953: The cultivatedCapsicum peppers. — Econ. Bot.7: 214–227.Google Scholar
  18. Hunziker, A. T., 1979: South AmericanSolanaceae: a synoptic survey. — InHawkes, J. G., Lester, R. N., Skelding, A. D., (Eds): The biology and taxonomy of theSolanaceae. — Linn. Soc. Symp. Ser.7: 49–85. — London: Academic Press.Google Scholar
  19. Jensen, R. J., McLeod, M. J., Eshbaugh, W. H., Guttman, S. I., 1979: Numerical taxonomic analyses of allozymic variation inCapsicum (Solanaceae). — Taxon28: 315–327.Google Scholar
  20. Kenton, A., Parokonny, A. S., Gleba, Y. Y., Bennett, M. D., 1993: Characterization of theNicotiana tabacum L. genome by molecular cytogenetics. — Molec. Gen. Genet.240: 159–169.Google Scholar
  21. Kroisel, P. M., Rosenkranz, W., Schweizer, D., 1985: Simultaneous production of R-bands and either replication patterns or sister chromatid differentiation. — Human Genet.71: 333–341.Google Scholar
  22. Lanteri, S., Pickersgill, B., 1993: Chromosomal structural changes inCapsicum annuum L. andC. chinense Jacq. — Euphytica67: 155–160.Google Scholar
  23. Levan, A., Fredga, K., Sandberg, A., 1964: Nomenclature for centromeric position in chromosomes. — Hereditas52: 201–220.Google Scholar
  24. Limaye, V. A., Patil, V. P., 1989: Karyomorphological studies in the genusCapsicum Linn. — Cytologia54: 455–463.Google Scholar
  25. McLeod, M. J., Guttman, S. I., Eshbaugh, W. H., Rayle, R. E., 1983: An electrophoretic study of evolution inCapsicum (Solanaceae). — Evolution37: 562–574.Google Scholar
  26. Moscone, E. A., 1990: Chromosome studies onCapsicum (Solanaceae) I. Karyotype analysis inC. chacoënse. — Brittonia42: 147–154.Google Scholar
  27. —, 1993: Estudios cromosómicos enCapsicum (Solanaceae) II. Análisis cariotípico enC. parvifolium yC. annuum var.annuum. — Kurtziana22: 9–18.Google Scholar
  28. —, 1993: Giemsa C-banded karyotypes inCapsicum (Solanaceae). — Pl. Syst. Evol.186: 213–229.Google Scholar
  29. —, 1995: Analysis of active nucleolus organizing regions inCapsicum (Solanaceae) by silver staining. — Amer. J. Bot.82: 276–287.Google Scholar
  30. Ohta, Y., 1962: Karyotype analysis ofCapsicum species. — Rep. Kihara Inst. Biol. Res.13: 93–99.Google Scholar
  31. Pickersgill, B., 1971: Relationships between weedy and cultivated forms in some species of chili peppers (genusCapsicum). — Evolution25: 683–691.Google Scholar
  32. —, 1977: Chromosomes and evolution inCapsicum. — InPochard, E., (Ed.):Capsicum 77. — Comptes Rendues 3ème Congrès Eucarpia Piment, pp. 27–37. — Avignon-Montfavet: Institut National de la Recherche Agronomique.Google Scholar
  33. —, 1988: The genusCapsicum: a multidisciplinary approach to the taxonomy of cultivated and wild plants. — Biol. Zentralbl.107: 381–389.Google Scholar
  34. —, 1991: Cytogenetics and evolution ofCapsicum L. — InTsuchiya, T., Gupta, P. K., (Eds): Chromosome engineering in plants: genetics, breeding, evolution, part B, pp. 139–160. — Amsterdam: Elsevier.Google Scholar
  35. —, 1979: Numerical taxonomic studies on variation and domestication in some species ofCapsicum. — InHawkes, J. G., Lester, R. N., Skelding, A. D., (Eds): The biology and taxonomy of theSolanaceae. — Linn. Soc. Symp. Ser.7: 679–700. — London: Academic Press.Google Scholar
  36. Pringle, G. J., Murray, B. G., 1993: Karyotypes and C-banding patterns in species ofCyphomandra Mart. exSendtner (Solanaceae). — Bot. J. Linn. Soc.111: 331–342.Google Scholar
  37. Schwarzacher, T., Schweizer, D., 1982: Karyotype analysis and heterochromatin differentiation with Giemsa C-banding and fluorescent counterstaining inCephalanthera (Orchidaceae). — Pl. Syst. Evol.141: 91–113.Google Scholar
  38. Schweizer, D., 1976: Reverse fluorescent chromosome banding with chromomycin and DAPI. — Chromosoma58: 307–324.Google Scholar
  39. —, 1979: Fluorescent chromosome banding in plants: applications, mechanisms, and implications for chromosome structure. — InDavies, D. R., Hopwood, D. A., (Eds): Proceedings of the Fourth John Innes Symposium, pp. 61–72. — Norwich: Crowe.Google Scholar
  40. —, 1980: Simultaneous fluorescent staining of R bands and specific heterochromatic regions (DA—DAPI bands) in human chromosomes. — Cytogenet. Cell Genet.27: 190–193.Google Scholar
  41. —, 1981: Counterstain-enhanced chromosome banding. — Human Genet.57: 1–14.Google Scholar
  42. —, 1983: Distamycin-DAPI bands: properties and occurrence in species. — InBrandham, P. E., Bennett, M. D., (Eds): Kew Chromosome Conference II, pp. 43–51. — London: Allen & Unwin.Google Scholar
  43. —, 1987: A model for heterochromatin dispersion and the evolution of C-band patterns. — InStahl, A., Luciani, J. M., Vagner-Capodano, A. M., (Eds): Chromosomes today9, pp. 61–74. — London: Allen & Unwin.Google Scholar
  44. —, 1994: Chromosome banding. Stain combinations for specific regions. — InGosden, J. R., (Ed.): Methods in molecular biology29: Chromosome analysis protocols, pp. 97–112. — Totowa: Humana Press.Google Scholar
  45. Shopova, M., 1966: Studies in the genusCapsicum I. Species differentiation. — Chromosoma19: 340–348.Google Scholar
  46. Sinclair, J. H., Brown, D. D., 1971: Retention of common nucleotide sequences in the ribosomal deoxyribonucleic acid of eukaryotes and some of their physical characteristics. — Biochemistry10: 2761–2769.Google Scholar
  47. Stack, S. M., 1974: Differential Giemsa staining of kinetochores and nucleolus organizer heterochromatin in mitotic chromosomes of higher plants. — Chromosoma47: 361–378.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Eduardo A. Moscone
    • 1
  • Maria Lambrou
    • 2
  • Friedrich Ehrendorfer
    • 2
  1. 1.Instituto Multidisciplinario de Biología Vegetal (IMBIV)CórdobaArgentina
  2. 2.Institute of Botany and Botanical Garden of the University of ViennaViennaAustria

Personalised recommendations