Advertisement

Plant Systematics and Evolution

, Volume 225, Issue 1–4, pp 119–132 | Cite as

Allozyme diversity in relation to geographic distribution and population size inLathyrus vernus (L.) Bernh. (Fabaceae)

  • K. Schiemann
  • T. Tyler
  • B. Widén
Article

Abstract

Lathyrus vernus (L.) Bernh. is a diploid, long-lived perennial and insect-pollinated herb with no special adaptation to long-distance dispersal. It occurs on neutral soil in deciduous forests throughout western Eurasia. Due to specific habitat preferences,L. vernus has a fragmented distribution with isolated populations. We investigated allozyme variation at eleven loci in 20 populations ofL. vernus from one geographically central region (the Czech Republic and the Slovak Republic) and two geographically marginal regions (southern and central Sweden) in the species present-day distribution. There was a clear differentiation between the three regions and the genetic distance between the populations was highly correlated with geographic distance. The total genetic diversity (HT) was 0.354. The proportion of genetic diversity due to differentiation between regions, and to differentiation between populations within regions, accounted for 10% each. There was no difference in level of genetic diversity between the three regions. No significant difference in level of genetic diversity was found between small and large populations. The genetic diversity inL. vernus may either be a result of the long generation-time of the species or peculiarities in the post-glacial migration species, e.g. survival only in refugia far east of the sampled populations and/or migration as a continuous process not involving founder-events.

Key words

Allozymes genetic diversity Lathyrus vernus migration population size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson G., Birger S. (1912) Den norrlänska florans geografiska fördelning och invandrings-historia. Almqvist & Wiksell, Uppsala.Google Scholar
  2. Backéus I. (1999) The late Quaternary vegetation history of Sweden. Acta Phytogeogr. Suec. 84: 15–20.Google Scholar
  3. Barrett S. C. H., Husband B. C. (1990) The genetics of plant migration and colonization. In: Brown A. D. H., Clegg M. T., Kahler A. L., Weir B. S. (eds.) Plant Population Genetics. Breeding and Genetic Resources. Sunderland, Massachusetts, Sinauer Associates, pp. 254–277.Google Scholar
  4. Barrett S. C. H., Kohn J. R. (1991) Genetic and evolutionary consequences of small population size. In: Falk D. A., Holsinger K. E. (eds.) Genetics and Conservation of Rare Plants. Oxford University Press, New York.Google Scholar
  5. Bennett K. D., Tzedakis P. C., Willis K. J. (1991) Quarternary refugia of north European trees. Journal of Biogeography 18: 103–115.Google Scholar
  6. Betancourt J. L., Schuster W. S., Mitton J. B., Anderson R. S. (1991) Fossil and genetic history of a pinyon pine (Pinus edulis) isolate. J. Ecol. 72: 1685–1697.Google Scholar
  7. Bossard J. L., Prowell D. P. (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Evol. Ecol. 13: 202–206.Google Scholar
  8. Brochmann C., Soltis D. E., Soltis P. S. (1992) Electrophoretic relationships and phylogeny of Nordic polyploids inDraba (Brassicaceae). Plant Syst. Evol. 182: 35–70.Google Scholar
  9. Broyles S. B. (1998) Postglacial migration and the loss of allozyme variation in northern populations ofAsclepias exaltata (Asclepiadaceae). Am. J. Bot. 85: 1091–1097.Google Scholar
  10. Cain M. L., Damman H., Muir A. (1998) Seed dispersal and the holocene migration of woodland herbs. Ecological Monographs 68: 325–347.Google Scholar
  11. Coates D. J. (1988) Genetic diversity and population genetic structure in the rare chittering grass wattle,Acacia anomala Court. Aust. J. Bot. 36: 273–286.Google Scholar
  12. Coyle B.F., Shark T. L., Feret P. O. (1982) Variation in leaf morphology among disjunct and continuous populations of river birch (Betula nigra L.). Silvae Genetica 31: 122–125.Google Scholar
  13. Crawford D. J., Wilson H. D. (1977) Allozyme variation inChenopodium fremontii. Syst. Bot. 2: 180–190.Google Scholar
  14. Critchfield W. B. (1984) Impact of Pleistocene on the genetic structure of North American conifers. In: Lanner R. M. (ed.) Impact of Pleistocene on the genetic structure of North American conifers. Logan, UT., Utah State University, pp. 70–118.Google Scholar
  15. Cywnar L. C., MacDonald G. M. (1987) Geographic variation of lodgepole pine in relation to population history. Am. Nat. 129: 463–469.Google Scholar
  16. Demesure B., Comps B., Petit P. J. (1996) Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. Evolution 50: 2515–2520.Google Scholar
  17. Dolan R. W. (1994) Population genetic structure and post-glacial migration in a rare prairie plant. Am. J. Bot. 81 (Suppl.): 51–52.Google Scholar
  18. Ehrlén J. (1993) Ultimate function of non-fruiting flowers inLathyrus vernus. Oikos 68: 45–52.Google Scholar
  19. Ehrlén J. (1994) Herbivory, pollen limitation and population dynamics inLathyrus vernus. Ph. D. Thesis. Dept. of Botany, Univ. of Stockholm, Sweden.Google Scholar
  20. Ehrlén J. (1997) Risk of grazing and flower number in a perennial herb. Oikos 80: 428–434.Google Scholar
  21. Ehrlén J., Eriksson O. (1996) Seedling recruitment in the perennial herbLathyrus vernus. Flora 191: 377–383.Google Scholar
  22. Falconer D. S. (1989) Introduction of Quantitative Genetics. 3rd ed. Longman, Essex, England.Google Scholar
  23. Ferris C., Oliver R. P., Davy A. J., Hewitt G. M. (1993) Native oak chloroplasts reveal an ancient divide across Europe. Mol. Ecol. 2: 33–44.Google Scholar
  24. Furnier G. R., Adams W. T. (1986) Geographic patterns of allozyme variation in Jeffrey pine. Am. J. Bot. 73: 1009–1015.Google Scholar
  25. Gabrielsen T. M., Bachmann K., Jacobsen K. S., Brochmann C. (1997) Glacial survival does not matter: RAPD phylogeography of NordicSaxifraga oppositifolia. Mol. Ecol. 6: 831–842.Google Scholar
  26. Giles B. E., Goudet J. (1997) Genetic differentiation inSilene dioica metapopulations: Estimation of spatiotemporal effects in a successional plant species. Am. Nat. 149: 507–526.Google Scholar
  27. Godt M. J. W., Hamrick J. L. (1991) Genetic variation inLathyrus latifolius (Leguminosae). Am. J. Bot. 78: 1163–1171.Google Scholar
  28. Guries R. P., Ledig F. T. (1982) Genetic diversity and population structure in pitch pine (Pinus nigra). Evolution 36: 387–402.Google Scholar
  29. Halkka S. (1985) Chromosome counts in Finnish vascular plants. Ann. Bot. Fenn. 22: 315–317.Google Scholar
  30. Hamrick J. L., Godt M. J. W. (1989) Allozyme diversity in plant species. In: Brown A. D. H., Clegg M. T., Kahler A. L., Weir B. S. (eds.) Plant population Genetics, Breeding and Genetic Variation in Plants. Sinauer Associates Inc., Sunderland, pp. 43–63.Google Scholar
  31. Hewitt G. M. (1993) Postglacial distribution and species substructures: lessons from pollen, insects and hybrid zones. In: Lees D. R., Edwards D. (eds.) Evolutionary patterns and processes. Academic Press, London, pp. 97–123.Google Scholar
  32. Hewitt G. M. (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247–276.Google Scholar
  33. Hewitt G. M. (1999) Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68: 87–112.Google Scholar
  34. Higgins S. I., Richardson D. M. (1999) Predicting Plant Migration Rates in a Changing World; The Role of Long-Distance Dispersal. Am. Nat. 153: 464–475.Google Scholar
  35. Huntley B., Birks H. J. B. (1983) An Atlas of Past and Present Pollen Maps for Europe: 0-13000 years ago. Cambridge University Press, Cambridge.Google Scholar
  36. Hultén E., Fries M. (1986) Atlas of North European vascular Plants. Koeltz scientific books.Google Scholar
  37. Jain S. K., Rai K. N., Singh R. S. (1981) Population biology ofAvena XI. Variation in peripheral isolates ofA. barbata. Genetica 56: 213–215.Google Scholar
  38. Kullman L. (1998) Non-analogous tree floras in the Scandes Mountains, Sweden, during the early Holocene: Macrofossil evidence of rapid geographic spread and response to palaeoclamate. Boreas 27: 153–161.Google Scholar
  39. Lavrenko A. N., Sorditov N. P., Ulle Z. G. (1989) Chromosome numbers in some species of flowering plants of the Ural. Bot. Zurn. 74: 1059–1061.Google Scholar
  40. Lesica P., Allendorf F. W. (1995) When are peripheral populations valuable for conservation? Conserv. Biol. 9: 753–760.Google Scholar
  41. Levin D. A. (1977) The organisation of genetic diversity inPhlox drummondii. Evol. 31: 477–494.Google Scholar
  42. Lewis P. O., Crawford D. J. (1995) Pleistocene refugium endemics exhibit greater allozymic diversity than widespread congeners in the genusPolygonella (Polygonaceae.). Am. J. Bot. 82: 141–149.Google Scholar
  43. Mahy G., Vekemans X., Jacquemart A., De Sloover J. (1997) Allozyme diversity and genetic structure in South Western populations of heather,Calluna vulgaris. New Phytol. 137(2): 325–334.Google Scholar
  44. Mantel N. (1967) The detection of disease clustering and generalized regression approach. Cancer Research 27: 209–220.Google Scholar
  45. Mercure A., Ralls K., Koepfli K. P., Wayne R. K. (1993) Genetic subdivision among small canids: mitochondrial DNA differentiation of swift, kit, and arctic foxes. Evol. 47: 1313–1328.Google Scholar
  46. Merilä J., Björklund M., Baker A. J. (1996) Genetic population structure and gradual northward decline of genetic variability in the greenfinch (Carduelis chloris). Evol. 50: 2548–2557.Google Scholar
  47. Mitton J. B. (1989) Physiological and demographic variation associated with allozyme variation. In: Soltis D., Soltis P. (eds.) Isozymes in Plant Biology. Dioscorides, Portland Or., pp. 127–145.Google Scholar
  48. Mitton J. B., Linhart Y. B., Sturgeon K. B., Hamrick J. L. (1979) Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. J. Hered. 70: 86–89.Google Scholar
  49. Moran G. F., Hopper S. D. (1987) Conservation of the genetic resources of rare and widespread eucalyptus in remnant vegetation. In: Sauders D. A., Arnold G. W., Burbridge A. A., Hopkins A. J. M. (eds.) Nature Conservation: The role of Remnants of Native Vegetation. Surrey, Beatty & Sons, Chipping Norton, pp. 151–162.Google Scholar
  50. Nei M. (1973) Analyses of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA, 70: 3321–3323.Google Scholar
  51. Nei M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89; 583–590.Google Scholar
  52. Nei M., Maruyama T., Chakraborty R. (1975) The bottleneck effect and genetic variability in populations. Evol. 29: 1–10.Google Scholar
  53. Nesbø C. L., Fossheim T., Vøllestad L. A., Jakobsen K. S. (1999) Genetic divergence and phylogeographic relationships among European perch (Perca fluviatalis) populations reflect glacial refugia and post-glacial colonization. Mol. Ecol. 8: 1387–1404.Google Scholar
  54. Nichols R. A., Hewitt G. M. (1994) The genetic consequences of long distance dispersal during colonization. Heredity 72: 312–317.Google Scholar
  55. Oberdorfer E. (1962) Pflanzensociologische Exkursionsflora für Süddeutschland und die angrenzenden Gebiete. 2nd ed. Verlag Eugen Ulmer, Stuttgart.Google Scholar
  56. Ouborg N. J., Piquot Y., Van Groenendeal J. M. (1999) Population genetics, molecular markers and the study of dispersal in plants. J. Ecol. 87: 551–568.Google Scholar
  57. Pogan E., Wcislow H., Jankun A. (1980) Further studies in chromosome numbers of Polish Angiosperms, part XIII. Acta Biol. Cracov. Ser. Bot. 22: 37–69.Google Scholar
  58. Prentice H. C., White R. J. (1988) Variability, population size and isolation; the structuring of diversity in ÖlandGypsophila fastigiata. Acta Œcologica Œcol. Plant 9: 19–29.Google Scholar
  59. Prober S. M., Tompkins C., Moran G. G., Bell J. C. (1990) The conservation genetics ofEucalyptus paliformis L. Johnson et Blaxell andE. parviflora Cambage, two rare species from southeastern Australia. Aust. J. Bot. 38: 79–95.Google Scholar
  60. Prober S. M., Brown A. H. D. (1994) Conservation of the grassy white box woodlands: Population genetics and fragmentation ofEucalyptus albens. Conserv. Biol. 8: 1003–1013.Google Scholar
  61. Raspé O., Jacquemart A.-L. (1998) Allozyme diversity and genetic structure of European populations ofSorbus aucuparia L. (Rosaceae: Maloideae). Heredity 81: 537–545.Google Scholar
  62. Sage R. D., Wolff J. O. (1986) Pleistocene glaciation, fluctuating ranges, and low genetic variability in a large mammal (Ovis dalli). Evol. 40: 1092–1095.Google Scholar
  63. Sampson J. F., Hopper S. D., James S. H. (1989) The mating system and population genetic structure in a bird-pollinated mallee,Eucalyptus rhodantha. Heredity 63: 383–393.Google Scholar
  64. Schwaegerle K. E., Schaal B. A. (1979) Genetic variability and founder effect in the pitcher plant,Sarracenia purpurea L. Evol. 33: 1210–1218.Google Scholar
  65. Serenko L. V., Shvets I. V. (1989) Karyologicheskoe isuchenie bobovykk (Fabaceae) Belorussii. In: Tesizy II Symp. Plant Karyology Novosibirsk, pp. 66–68.Google Scholar
  66. Soltis D. E., Gitzendanner M. A., Strenge P. S. (1997) Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. Plant Syst. Evol. 206: 353–373.Google Scholar
  67. Sork V. L., Nason J., Campbell D. R., Fernandez J. F. (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends Evol. Ecol. 14: 219–224.Google Scholar
  68. Swofford O. L., Selander R. B. (1989) BIOSYS-1: A computer program for the analysis of allelic variation in genetics. User's manual. Univ. Illinois. Urbana.Google Scholar
  69. Taberlet P., Fumagalli L., Wust-Saucy A-G., Cosson J-F. (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7: 453–464.Google Scholar
  70. Tigerstedt P. M. A. (1973) Studies on isozyme variation in marginal and central populations ofPicea abies. Hereditas 75: 47–60.Google Scholar
  71. van Treuren R., Bijlsma R., van Delden W., Ouborg N. J. (1991) The significance of genetic erosion in the process of extinction. I. Genetic differentiation inSalvia pratensis andScabiosa columbaria in relation to population size. Heredity 66: 181–189.Google Scholar
  72. Wendel J. F., Parks C. R. (1985) Genetic diversity and population structure inCamellia japonica L. (Theaceae). Am. J. Bot. 72: 52–65.Google Scholar
  73. Wendel J. F., Weeden N. F. (1989) Visualization and interpretation of plant isozymes. In: Soltis D., Soltis P. (eds.) Isozymes in Plant Biology. Dioscorides, Portland Or., pp. 5–45.Google Scholar
  74. Whitlock M. C., McCauley D. E. (1999) Indirect measures of gene flow and migration: FST ≠ 1/(4Nm + 1). Heredity 82: 117–125.Google Scholar
  75. Wright S. (1931) Evolution in Mendelian populations. Genetics 16: 97–159.Google Scholar
  76. Yeh F. C., Layton C. (1979) The organization of genetic variability in central and marginal populations of logepole pine,Pinus contorta ssp.latifolia. Can. J. Genet. Cytol. 21: 487–503.Google Scholar
  77. Yeh F. C., O'Malley D. O. (1980) Enzyme variation in natural populations of Douglas-fir,Pseudotsuga menziesii (Mirb.) Franco, from British Columbia 1. genetic variation patterns in coastal populations. Silvae Genetica 29: 83–92.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • K. Schiemann
    • 1
  • T. Tyler
    • 1
  • B. Widén
    • 1
  1. 1.Department of Systematic BotanyUniversity of LundLundSweden

Personalised recommendations