Advertisement

Plant Systematics and Evolution

, Volume 209, Issue 3–4, pp 139–158 | Cite as

Population structure and interspecific differentiation of the peat moss sister speciesSphagnum rubellum andS. capillifolium (Sphagnaceae) in northern Europe

  • Nils Cronberg
Article

Abstract

Isozyme electrophoresis was used to study the morphologically similar sister speciesSphagnum rubellum andS. capillifolium from a sample of 1313 plants representing 37 populations from Scandinavia, Great Britain and S Germany. The mean pairwise genetic identities (I) among conspecific populations were 0.976 forS. rubellum and 0.969 forS. capillifolium, versus 0.627 between populations of the two species. Interspecific gene flow was indicated by the observation of occasional plants in sympatric populations with alleles otherwise unique to the other species. Populations of bisexualS. capillifolium were significantly more variable than populations of unisexualS. rubellum. Alpine populations ofS. rubellum andS. capillifolium were dominated by few genotypes, and differentiation among populations was pronounced, indicating a low level of sexual recombination. InS. rubellum, maximum variability was found in western areas with high annual precipitation. Distribution of alleles inS. rubellum indicated restricted gene flow between Great Britain and Scandinavia. Postglacial migration from separate refugia may explain large-scale variation inS. rubellum.

Key words

Bryophyta Sphagnum rubellum S. capillifolium Isozymes allozymes genetic distance genetic diversity clonal diversity breeding system hybridization gene flow postglacial migration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, L. E., 1990: A checklist ofSphagnum in North America north of Mexico. — Bryologist93: 500–501.Google Scholar
  2. Andrews, A. L., 1913:Sphagnales. — North American Flora15.Google Scholar
  3. —, 1958: Notes on North AmericanSphagnum X. Review. — Bryologist61: 269–276.Google Scholar
  4. Andrus, R. E., 1979:Sphagnum subtile (Russow)Warnst. and allied species in North America. — Syst. Bot.4: 351–362.Google Scholar
  5. Boisselier-Dubayle, M. C., Jubier, M. F., Lejeune, B., Bishler, H., 1995: Genetic variability in the three subspecies ofMarchantia polymorpha (Hepaticae): isozymes, RFLP and RAPD markers. — Taxon44: 363–376.Google Scholar
  6. Cavalli-Sforza, L. L., Edwards, A. W. F., 1967: Phylogenetic analysis: models and estimation procedures. — Evolution21: 550–570.Google Scholar
  7. Crawford, D. J., 1989: Enzyme electrophoresis and plant systematics. — InSoltis, D. E., Soltis, P. S., (Eds): Isozymes in plant biology, pp. 146–164. — Portland, Oregon: Dioscorides Press.Google Scholar
  8. Cronberg, N., 1989: Patterns of variation in morphological characters and isoenzymes in populations ofSphagnum capillifolium (Erh.)Hedw. andS. rubellum Wils. from two bogs in southern Sweden. — J. Bryol.15: 683–696.Google Scholar
  9. —, 1995: Isozyme electrophoresis as applied toSphagnum: an analysis of methodology. — Lindbergia20: 40–48.Google Scholar
  10. —, 1996a: Isozyme evidence of relationships withinSphagnum L. sect.Acutifolia Wils. (Sphagnaceae, Bryophyta). — Pl. Syst. Evol.203: 41–64.Google Scholar
  11. —, 1996b: Clonal structure and fertility in a sympatric population of the peat mosses,Sphagnum rubellum andS. capillifolium. — Canad. J. Bot.74: 1375–1385.Google Scholar
  12. - 1997: Genotypic differentiation between the two related peat mosses,Sphagnum rubellum andS. capillifolium in Northern Europe. — J. Bryol. (In press).Google Scholar
  13. -Molau, U., Sonesson, M., 1997: Genetic variation in the clonal bryophyteHylocomium splendens at hierarchical geographic scales in Scandinavia. — Heredity. (In press).Google Scholar
  14. Cruden, R. W., Lloyd, R. M., 1995: Embryophytes have equivalent sexual phenotypes and breeding systems: Why not a common terminology to describe them. — Amer. J. Bot.82: 816–825.Google Scholar
  15. Crum, H., 1984:Sphagnopsida, Sphagnaceae. — North American Flora, ser. 2, part11, pp. 1–180.Google Scholar
  16. Daniels, R. E., 1982: Isozyme variation in British populations ofSphagnum pulchrum (Braithw.)Warnst. — J. Bryol.12: 65–76.Google Scholar
  17. —, 1985a: Isozyme variation in populations ofSphagnum recurvum var.mucronatum from Britain and Finland. — J. Bryol.13: 563–570.Google Scholar
  18. —, 1985b: Isozyme variation in Finnish and British populations ofSphagnum compactum. — Ann. Bot. Fenn.22: 275–279.Google Scholar
  19. —, 1993: Phenotypic and genotypic variation inSphagnum. — Advances Bryol.5: 31–60.Google Scholar
  20. —, 1990: Handbook of European Sphagna. 2nd edn. — London: HMSO.Google Scholar
  21. Derda, G. S., Wyatt, R., 1990: Genetic variation in the common hair-cap moss,Polytrichum commune. — Syst. Bot.15: 592–605.Google Scholar
  22. Dewey, R. M., 1989: Genetic variation in the liverwortRiccia dictyospora (Ricciaceae, Hepaticopsida). — Syst. Bot.14: 155–167.Google Scholar
  23. Ellstrand, N. C., Roose, M. L., 1987: Patterns of genotypic diversity in clonal plant species. — Amer. J. Bot.74: 123–131.Google Scholar
  24. Eriksson, O., 1993: Dynamics of genets in clonal plants. — Trends Ecol. Evol.8: 313–316.Google Scholar
  25. Ferris, C., Oiver, R. P., Davy, A. J., Hewitt, G. M., 1993: Native oak chloroplasts reveal an ancient divide across Europe. — Molec. Ecol.2: 337–344.Google Scholar
  26. Gignac, D. L., 1993: Distribution ofSphagnum species, communities, and habitats in relation to climate. — Advances Bryol.5: 187–222.Google Scholar
  27. Hamrick, J. L., Godt, M. J., 1990: Allozyme diversity in plant species. — InBrown, A. H. D., Clegg, M. T., Kahler, A. L., Weir, B. S., (Eds): Plant population genetics, breeding and genetic resources, pp. 3–63. — Sunderland: Sinauer.Google Scholar
  28. Hill, M. O., 1976: A critical assessment of the distinction betweenSphagnum capillaceum (Weiss)Schrank andS. rubellum Wils. in Britain. — J. Bryol.9: 185–191.Google Scholar
  29. —, 1978:Sphagnopsida. — InSmith, A. J. E., (Ed.): The moss flora of Britain and Ireland, pp. 30–78. — Cambridge: Cambridge University Press.Google Scholar
  30. Huntley, B., Birks, H. J. B., 1983: An atlas of past and present pollen maps for Europe: 0–13000 years ago. — Cambridge: Cambridge University Press.Google Scholar
  31. Isoviita, P., 1966: Studies onSphagnum L. I. Nomenclatural revision of the European taxa. — Ann. Bot. Fenn.7: 157–162.Google Scholar
  32. Lagercrantz, U., Ryman, N., 1990: Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. — Evolution44: 38–53.Google Scholar
  33. Lane, D. M., 1981: Variation in certain taxa ofSphagnum from the Atlantic Coastal Plain. — J. Hattori Bot. Lab.49: 169–245.Google Scholar
  34. Mårtensson, O., 1956: Bryophytes of the Torneträsk area, Northern Swedish Lapland. II.Musci. — Kungl. Svenska Vetenskapsakad. Avh. Naturskydd14: 1–321.Google Scholar
  35. McQueen, C. B., 1985a: Patterns of variation inSphagnum capillifolium sensu lato. — Bryologist88: 255–262.Google Scholar
  36. —, 1985b: Spatial patterns and gene flow distances inSphagnum subtile. — Bryologist88: 333–336.Google Scholar
  37. —, 1989: A biosystematic study ofSphagnum capillifolium sensu lato. — Bryologist92: 1–24.Google Scholar
  38. Montagnes, R. J. S., Bayer, R. J., Vitt, D. H., 1993: Isozyme variation in the mossMeesia triquetra (Meesiaceae). — J. Hattori Bot. Lab.74: 155–170.Google Scholar
  39. Nei, M., 1972: Genetic distance between populations. — Amer. Naturalist106: 238–292.Google Scholar
  40. —, 1973: Analysis of gene diversity in subdivided populations. — Proc. Natl. Acad. Sci. USA70: 3321–3323.Google Scholar
  41. —, 1975: Molecular population genetics and evolution. — Amsterdam, New York: North Holland.Google Scholar
  42. —, 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics89: 583–590.Google Scholar
  43. Nyholm, E., 1969: Illustrated moss flora of Fennoscandia.2. Musci. Fasc.6. — Lund.Google Scholar
  44. Odrzykoski, I. J., Szweykowski, J., 1991: Genetic differentiation without morphological divergence in the thallose liverwortConocephalum conicum. — Pl. Syst. Evol.178: 135–151.Google Scholar
  45. Pielou, E. C., 1969: An introduction to mathematical ecology. — New York: Wiley.Google Scholar
  46. Rahman, S. M. A., 1966: Experimental taxonomy and morphogenesis of some British sphagna. — Thesis, University of Exeter, Exeter.Google Scholar
  47. Rogers, J. R., 1986: Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. — Syst. Zool.35: 297–310.Google Scholar
  48. Rybnícek, K., 1973: A comparison of the the present and past mire communities of Central Europe. — InBirks, H. J. B., West, R. G., (Eds): The quaternary plant ecology. 14th symposium of the British Ecological Society, University of Cambridge, pp. 237–261. — London: Blackwell.Google Scholar
  49. Shaw, J., Rooks, P. E., 1994: Systematics ofMielichhoferia (Bryaceae: Musci) I. Morphological and genetic analyses ofM. elongata andM. mielichhoferiana. — Bryologist97: 1–12.Google Scholar
  50. —, 1987: Electrophoretic evidence of reproductive isolation between two varieties of the moss,Climacium americanum. — Heredity59: 337–343.Google Scholar
  51. Siegel, S., 1956: Nonparametric statistics for the behavioural sciences. — Tokyo: McGraw—Hill Kogakusha.Google Scholar
  52. Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. — San Fransisco: Freeman.Google Scholar
  53. Sokal, R. R., Rohlf, F. J., 1981: Biometry. 2nd edn. — San Fransisco: Freeman.Google Scholar
  54. Soltis, D. E., Haufler, C. H., Darrow, D. C., Gastony, G. J., 1983: Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers and staining schedules. — Amer. Fern J.73: 9–27.Google Scholar
  55. Stoneburner, A., Wyatt, R., Odrzykoski, I. J., 1991: Applications of enzyme electrophoresis to bryophyte systematics and population biology. — Advances Bryol.4: 1–27.Google Scholar
  56. Swofford, D. L., Olesen, G. J., 1990: Phylogeny reconstruction. — InHillis, M. D., Moritz, C., (Eds): Molecular systematics, pp. 411–501. — Sunderland: Sinauer.Google Scholar
  57. —, 1981: BIOSYS-1: a Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. — J. Heredity72: 281–283.Google Scholar
  58. Szweykowski, I. J., Odrzykoski, I. J., 1990: Chemical differentiation ofAneura pinguis (L.)Dum. (Hepaticae, Aneuraceae) in Poland and some comments on the application of enzymatic markers in Bryology. — InZinsmeister, H. D., Mues, R., (Eds): Chemotaxonomy of bryophytes, pp. 437–448. — New York: Academic Press.Google Scholar
  59. Tolonen, K., 1967: Über die Entwicklung der Moore im finnischen Nordkarelien. — Ann. Bot. Fenn.4: 219–416.Google Scholar
  60. Vitt, D. H., Kuhry, P., 1992: Changes in moss-dominated wetland ecosystems. — InBates, J. W., Farmer, A. M., (Eds): Bryophytes and lichens in a changing environment, pp. 178–210. — Oxford: Oxford Science Publications.Google Scholar
  61. Wendel, J. F., Weeden, N. F., 1989: Visualization and interpretation of plant isozymes. — InSoltis, D. E., Soltis, P. S., (Eds): Isozymes in plant biology, pp. 5–45. — Portland, Oregon: Dioscorides Press.Google Scholar
  62. Williams, M. A. J., Dunkerley, D. L., Deckker, P. de, Kershaw, A. P., Stokes, T., 1993: Quaternary environments. — London: Arnold.Google Scholar
  63. Wyatt, R., 1982: Population ecology of bryophytes. — J. Hattori Bot. Lab.52: 170–198.Google Scholar
  64. —, 1985: Species concepts in bryophytes: input from population biology. — Bryologist88: 182–189.Google Scholar
  65. —, 1994: Population genetics of bryophytes in relation to their reproductive biology. — J. Hattori Bot. Lab.76: 147–157.Google Scholar
  66. —, 1989a: Bryophyte isozymes: systematic and evolutionary implications. — InSoltis, D. E., Soltis, P. S., (Eds): Isozymes in plant biology, pp. 221–240. — Portland, Oregon: Dioscorides Press.Google Scholar
  67. —, 1989b: High levels of genetic variability in the haploid mossPlagiomnium ciliare. — Evolution43: 1085–1096.Google Scholar
  68. —, 1993: Isozyme evidence regarding the origins of the allopolyploid mossPlagiomnium curvatulum. — Lindbergia18: 49–58.Google Scholar
  69. Zielinski, R., 1987: Genetic variation and evolution of the liverwort genusPellia. — Szczecin: University of Szcezecin Press.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Nils Cronberg
    • 1
  1. 1.Department of Systematic BotanyLund UniversityLundSweden

Personalised recommendations