Plant Systematics and Evolution

, Volume 207, Issue 1–2, pp 1–11 | Cite as

Nuclear DNA content in species ofEleusine (Gramineae): A critical re-evaluation using laser flow cytometry

  • K. S. Mysore
  • V. Baird


Interest in dinitroaniline herbicide resistant biotypes ofEleusine indica, and an as yet undetermined taxon ofEleusine, necessitated a revaluation of reported nuclear genome size estimates for available species in the genus. Laser flow cytometry showed that the nuclear DNA content of six of the seven species examined had 15 to 50% less DNA than reported previously. It was also determined that roots, as contrasted to leaves, possessed a large fraction of nuclei at the 4C or 8C DNA content level, in diploid or tetraploid species, respectively (i.e. the G2/M peak). Two major reasons for the previously reported overestimation may include sampling only of root tissues where endopolyploid and normal diploid nuclei both occur and the inappropriate choice of onion nuclei as an internal standard.

Key words

Gramineae Eleusine indica E. multiflora E. coracana subsp.coracana E. coracana subsp.africana E. tristachya C-value genome size nuclear DNA nuclei isolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arumuganathan, K., Earle, E., 1991a: Estimation of nuclear DNA content of plants by flow cytometry. — Pl. Molec. Biol. Reporter9: 229–241.Google Scholar
  2. , 1991b: Nuclear DNA content of some important plant species. — Pl. Molec. Biol. Reporter9: 208–218.Google Scholar
  3. Baird, W. V., Estager, A. S., Wells, J., 1994: Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. — J. Amer. Soc. Hort. Sci.119: 1312–1316.Google Scholar
  4. Bennett, M. D., 1985: Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics. — InFreeling, M., (Ed.): Plant genetics, pp. 283–302. — New York: Liss.Google Scholar
  5. Black, C. L., Beckman, R. L., 1983: The variability of nuclear DNA and its implications for polyploidy in white ash (Fraxinus americana L.:Oleaceae). — Amer. J. Bot.70: 1420–1423.Google Scholar
  6. Britten, R. J., Kohne, D. E., 1968: Repeated sequences in DNA. — Science161: 529–540.Google Scholar
  7. Bryans, C., Smith, D. L., 1985: Endopolyploidy, cell volume and nuclear volume interrelationships in cotyledons ofLeguminosae. — Ann. Bot.55: 225–237.Google Scholar
  8. D'Amato, F., 1952: Ploidy in the differentiation and function of tissues and cells in plants: a critical examination of the literature. — Caryologia4: 311–357.Google Scholar
  9. Doležel, J., 1991: Flow cytometry analysis of nuclear DNA content in higher plants. — Phytochem. Analysis2: 143–154.Google Scholar
  10. Doolittle, W. F., 1985: The evolutionary significance of middle-repetitive DNAs. — InCavalier-Smith, T., (Ed.): The evolution of genome size, pp. 443–487. — New York: Wiley.Google Scholar
  11. Dyson, P., Sherratt, D., 1985: Molecular mechanisms of duplication, deletion and transposition of DNA. — InCavalier-Smith, T., (Ed.): The evolution of genome size, pp. 353–395. — New York: Wiley.Google Scholar
  12. Galbraith, D. W., 1984: Flow cytometric analysis of the cell cycle. — InVasil, I. K., (Ed.): Cell culture and somatic cell genetics of plants, pp. 765–777. — New York: Academic Press.Google Scholar
  13. , 1989: Analysis of higher plants by flow cytometry and cell sorting. — Int. Rev. Cytol.116: 165–228.Google Scholar
  14. , 1991: Systematic endopolyploidy inArabidopsis thaliana. — Pl. Physiol.96: 985–989.Google Scholar
  15. , 1983: Rapid flow cytometric analysis of the cell cycle in intact plant tissues. — Science220: 1049–1051.Google Scholar
  16. Gray, J. W., Langlois, R. G., 1986: Chromosome classification and purification using flow cytometry sorting. — Ann. Rev. Biophysics. Biophys. Chem.15: 195–235.Google Scholar
  17. Hammatt, N., Blackhall, N. W., Davey, M. R., 1991: Variation in the DNA content ofGlycine species. — J. Exp. Bot.42: 659–665.Google Scholar
  18. Hilu, K. W., 1980:Eleusine tristachya (Lam.)Lam. — Madroño27: 177–178.Google Scholar
  19. , 1995: Evolution of finger millet: evidence from random amplified polymorphic DNA. — Genome38: 232–238.Google Scholar
  20. -deWet, J. M., 1976: Domestication ofEleusine coracana. — Econ. Bot. 199–208.Google Scholar
  21. , 1978: Flavonoids and the systematics ofEleusine. — Biochem. Syst. Ecol.6: 247–249.Google Scholar
  22. , 1992: Ribosomal DNA variation in finger millet and wild species ofEleusine (Poaceae). — Theor. Appl. Genet.83: 895–902.Google Scholar
  23. Hiremath, S. C., Salimath, S. S., 1991: Quantitative nuclear DNA changes inEleusine (Gramineae). — Pl. Syst. Evol.178: 225–233.Google Scholar
  24. Jones, R. N., Rees, H., 1968: Nuclear DNA variation inAllium. — Heredity23: 326–336.Google Scholar
  25. , 1976: Chromosome evolution and DNA variation inCrepis. — Heredity36: 91–104.Google Scholar
  26. Keeler, K. H., Kwankin, B., Barnes, P. W., Galbraith, D. W., 1987: Polyploid polymorphism inAndropogon gerardii. — Genome29: 374–379.Google Scholar
  27. Knowles, R., Srienc, F., Phillips, R. L., 1990: Endoreduplication of nuclear DNA in the developing maize endosperm. — Developmental Genet.11: 125–132.Google Scholar
  28. Maclean, N., 1973: Suggested mechanism for increase in size of the genome. — Nature New Biol.246: 205–206.Google Scholar
  29. Michaelson, M. J., Price, H. J., Ellison, J., Johnston, S., 1991a: Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. — Amer. J. Bot.78: 183–188.Google Scholar
  30. , 1991b: Variation of nuclear DNA content inHelianthus annuus (Asteraceae). — Amer. J. Bot.78: 1238–1243.Google Scholar
  31. Mysore, K., Baird, V., 1995: Molecular characterization of the tubulin-related gene families in herbicide resistant and susceptible goosegrass (Eleusine indica). — Weed Sci.43: 28–33.Google Scholar
  32. Phillips, S. M., 1972: A survey of the genusEleusine Gaertn. (Gramineae) in Africa. — Kew Bull.27: 251–270.Google Scholar
  33. Price, H. J., 1976: Evolution of DNA content in higher plants. — Bot. Rev.42: 27–52.Google Scholar
  34. , 1988a: DNA content variation among higher plants. — Ann. Missouri Bot. Gard.75: 1248–1257.Google Scholar
  35. , 1988b: Nuclear DNA content variation within angiosperm species. — Evol. Trends Pl.2: 53–60.Google Scholar
  36. Raina, S. N., 1990: Genome organization and evolution in the genusVicia. — InKawano, S., (Ed.): Biological approaches and evolutionary trends in plants, pp. 183–201. — London: Academic Press.Google Scholar
  37. Scharpe, A., van Parijs, R., 1973: The formation of polyploid cells in ripening cotyledons ofPisum sativum L. in relation to ribosome and protein synthesis. — J. Exp. Bot.24: 216–222.Google Scholar
  38. Seal, A. G., 1983: DNA variation inFestuca. — Heredity50: 225–236.Google Scholar
  39. Shapiro, H. S., 1976: Deoxyribonucleic acid content per cell of various organisms. — InFasman, G. D., (Ed.): Handbook of biochemistry and molecular biology, pp. 284–306. — Cleveland: CRC Press.Google Scholar
  40. Tiersch, T., Chandler, R., Wachtel, S., Elias, S., 1989: Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. — Cytometry10: 706–710.Google Scholar
  41. Torrey, J. G., Fosket, D. E., 1970: Cell division in relation to cytodifferentiation in cultured pea root segments. — Amer. J. Bot.57: 1072–1080.Google Scholar
  42. Van't Hof, J., 1965: Relationship between mitotic cycle duration, S period duration and average rate of DNA synthesis in the root meristem cells in several plants. — Exp. Cell Res.39: 48–58.Google Scholar
  43. Verma, S. C., Rees, H., 1974: Nuclear DNA and the evolution of allotetraploidBrassicaceae. — Heredity33: 61–68.Google Scholar
  44. Zeng, L., Baird, V., 1997: Genetic basis of dinitroaniline herbicide resistance in a highlyresistant biotype of goosegrass (Eleusine indica). — J. Heredity (in press).Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • K. S. Mysore
    • 1
  • V. Baird
    • 1
  1. 1.Department of HorticultureClemson UniversityClemsonUSA

Personalised recommendations