Skip to main content
Log in

Ripe pollen structure and histochemistry of some gymnosperms

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Some aspects of pollen cytology at dispersal were studied in 12 species of gymnosperms. The pollen grains differed in: 1. volume and cell number; 2. polarization of external structure and internal cell components; 3. wall thickness, especially of the intine, and the resulting percentage of cell volume with respect to total pollen grain volume; 4. stratification and chemical nature of the various intine layers; 5. nature and location of polysaccharide reserves; 6. morphological differences between the dry and hydrated states and phenomena related to hydration; 7. presence and site of orbicles. The various characters are compared and discussed in relation to the length of the reproductive cycle and the relations between the male gametophyte and its female counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker, H. G., Baker, I., 1983: Some evolutionary and taxonomic implications of variation in the chemical reserves of pollen. — InMulcahy, D. L., Ottaviano, E., (Eds): Pollen biology and implications for plant breeding, pp. 43–52. — New York: Elsevier Biomedical.

    Google Scholar 

  • Bassani, M., Pacini, E., Franchi, G. G., 1994: Humidity stress responses in pollen of anemophilous and entomophilous species. — Grana33: 146–150.

    Google Scholar 

  • Bewley, I. D., Black, M., 1985: Seeds: physiology of development and germination. — New York: Plenum Press.

    Google Scholar 

  • Bianchini, M., Pacini, E., 1996: Explosive anther dehiscence inRicinus communis L. involves cell wall modifications and relative humidity. — Int. J. Pl. Sci.157: 739–745.

    Google Scholar 

  • Bino, R. J., Dafni, A., Meeuse, A. D. J., 1984: Entomophily in the dioecious gymnospermEphedra aphylla Forsk. (=E. alte C. A. Mey.), with some notes onE. campylopoda C. A. Mey. — I. Aspects of the entomophilous syndrome. — Proc. Kon. Ned. Akad. Wetensch., C,87: 1–13.

    Google Scholar 

  • Chaboud, A., Perez, R., 1992: Generative cell and male gametes: isolation, physiology and biochemistry. — Int. Rev. Cytol.140: 205–232.

    Google Scholar 

  • Chesnoy, L., 1987: La reproduction sexuée des Gymnospermes. — Bull. Soc. Bot. France134: 63–85.

    Google Scholar 

  • Coleman, A. W., Goff, L. J., 1985: Application of fluorochromes to pollen biology. 1. Mithramycin-8 — 4,6-diamino-2-phenylindole (DAPI) as vital stain and for quantitation of nuclear DNA. — Stain Technol.60: 145–154.

    PubMed  Google Scholar 

  • Dawkins, M. D., Owens, J. N., 1993: In vitro and in vivo pollen hydration, germination, and pollen-tube growth in white spruce,Picea glauca (Moench)Voss. — Int. J. Pl. Sci.154: 506–521.

    Google Scholar 

  • Duhoux, E., 1982: Mechanism of exine rupture in hydrated taxoid types of pollen. — Grana21: 1–7.

    Google Scholar 

  • Endress, P. K., 1994: Diversity and evolutionary biology of tropical flowers. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Erdtman, G., 1965: Pollen and spore morphology/plant taxonomy —Gymnospermae, Bryophyta. — Stockholm: Almqvist & Wiksell.

    Google Scholar 

  • Faegri, K., Van Der Pijl, L., 1979: The principles of pollination ecology. 3rd edn. — Oxford: Pergamon Press.

    Google Scholar 

  • Franchi, G. G., Pacini, E., 1996: Types of pollination and seed dispersal in Mediterranean plants. — Giorn. Bot. Ital.130: 579–585.

    Google Scholar 

  • —, 1996: Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. — Flora191: 143–159.

    Google Scholar 

  • Heslop-Harrison, J., 1972: Sexuality of angiosperms. — InSteward, F. L., (Ed.): Plant physiology.6C, pp. 133–289. — New York: Academic Press.

    Google Scholar 

  • —, 1977: The pollen stigma interaction: pollen tube penetration inCrocus. — Ann. Bot.41: 913–922.

    Google Scholar 

  • —, 1979: Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). — Ann. Bot.44 (Suppl.1): 1–47.

    Google Scholar 

  • —, 1969: Time relationships of sporopollenin synthesis associated with tapetum and microspores inLilium. — Planta84: 199–214.

    Google Scholar 

  • Hesse, M., 1984: Pollenkitt is lacking inGnetatae: Ephedra andWelwitschia; further proof for its restriction to the angiosperms. — Pl. Syst. Evol.144: 9–16.

    Google Scholar 

  • Hughes, J., McCully, M. E., 1975: The use of an optical brightener in the study of plant structure. — Stain Technol.50: 319–329.

    PubMed  Google Scholar 

  • Huxley, A., Griffiths, M., Levy, M., (Eds), 1992: The new Royal Horticultural Society dictionary of gardening. — London: Macmillan Press.

    Google Scholar 

  • Huynh, K.-L., 1974: Le probléme de la polarité du pollen d'Ephedra. — Pollen & Spores16: 469–474.

    Google Scholar 

  • Johansen, D. A., 1940: Plant microtechnique. — New York: McGraw Hill.

    Google Scholar 

  • Kato, M., Inoue, T., Nagamitsu, T., 1995: Pollination biology ofGnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Sarawak. — Amer. J. Bot.82: 862–868.

    Google Scholar 

  • Kurmann, M. H., 1991: Exine stratification in extant gymnosperms: a review of published transmission electron micrographs. — Kew Bull.47: 25–39.

    Google Scholar 

  • —, 1994: Pollen morphology and ultrastructure in theCupressaceae. — Acta Bot. Gallica141: 141–147.

    Google Scholar 

  • Lisci, M., Tanda, C., Pacini, E., 1994: Pollination ecophysiology ofMercurialis annua L. (Euphorbiaceae), an anemophilous species flowering all year round. — Ann. Bot.74: 125–135.

    Google Scholar 

  • Martens, P., Waterkeyn, L., 1962: Structure du pollen “ailé” chez les Coniféres. — Cellule62: 173–222.

    Google Scholar 

  • Nepi, M., Pacini, E., 1993: Pollination, pollen viability and pistil receptivity inCucurbita pepo. — Ann. Bot.72: 527–536.

    Google Scholar 

  • —, 1995: Development ofCucurbita pepo pollen: ultrastructure and histochemistry of the sporoderm. — Canad. J. Bot.73: 1046–1057.

    Google Scholar 

  • Niklas, K. J., 1985: The aerodynamics of wind pollination. — Bot. Rev.51: 328–386.

    Google Scholar 

  • O'Brien, T. P., McCully, M. E., 1981: The study of plant structure. Principles and selected methods. — Melbourne: Thermarcarphi.

    Google Scholar 

  • Owens, J. N., Simpson, S. J., Molder, M., 1980: The pollination mechanism in yellow cypress (Chamaecyparis nootkatensis). — Canad. J. Forest Res.10: 564–572.

    Google Scholar 

  • —, 1981: The pollination mechanism and the optimal time of pollination in Douglas fir (Pseudotsuga menziesii). — Canad. J. Forest Res.11: 36–50.

    Google Scholar 

  • —, 1987: The pollination mechanism of Engelmann spruce (Picea engelmannii). — Canad. J. Bot.65: 1439–1450.

    Google Scholar 

  • —, 1995: The reproductive biology of Kauri (Agathis australis). II. Male gametes, fertilization, and cytoplasmic inheritance. — Int. J. Pl. Sci.156: 404–416.

    Google Scholar 

  • Pacini, E., 1990: Harmomegathic characters ofPteridophyta spores andSpermatophyta pollen. — Pl. Syst. Evol., Suppl.5: 53–69.

    Google Scholar 

  • —, 1994: Cell biology of anther and pollen development. — InWilliam, E. G., Knox, R. B., Clarke, A. E., (Eds): Genetic control of self incompatibility and reproductive development in flowering plants, pp. 289–308. — Dordrecht: Kluwer.

    Google Scholar 

  • —, 1996: Types and meaning of pollen carbohydrate reserves. — Sexual Pl. Reprod.9: 362–366.

    Google Scholar 

  • —, 1984: Reproduction in Mediterranean plants. — Webbia38: 93–103.

    Google Scholar 

  • —, 1988: Amylogenesis and amylolysis during pollen grain development. — InCresti, M., Gori, P., Pacini, E., (Eds): Sexual reproduction in higher plants, pp. 181–186. — Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • —, 1991: Diversification and evolution of the tapetum. — InBlackmore, S., Barnes, S. H., (Eds): Pollen and spores. Patterns of diversification, pp. 301–316. — Oxford: Oxford Science Publications.

    Google Scholar 

  • —, 1993: Role of tapetum in pollen and spore dispersal. — Pl. Syst. Evol., Suppl.7: 1–11.

    Google Scholar 

  • —, 1996: Some cytological and evolutionary aspects of pollination. — Acta Soc. Bot. Polon.65: 11–16.

    Google Scholar 

  • —, 1985: The tapetum: its form, function and possible phylogeny inEmbryophyta. — Pl. Syst. Evol.149: 155–185.

    Google Scholar 

  • —, 1992: Plastid developmental pathways in some angiosperm reproductive cells. — InOttaviano, E., Mulcahy, D. L., Sari Gorla, M., Bergamini Mulcahy, G., (Eds.): Angiosperm pollen and ovules, pp. 36–42. — Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Pardi, M. L., Viegi, L., Cela Renzoni, G., Franchi, G. G., Pacini, E., 1996: Effects of different pH values on insoluble polysaccharide content of germinating pollen ofPinus pinea andPinus pinaster. — Grana35: 240–247.

    Google Scholar 

  • Pearse, A. G. E., 1968: Histochemistry. Theoretical and applied.1. — London: Churchill.

    Google Scholar 

  • Punt. W., Blackmore, S., Nilsson, S., Le Thomas, A., 1994: Glossary of pollen and spore terminology. — Utrecht: LPP Foundation.

    Google Scholar 

  • Singh, H., 1978: Embryology of gymnosperms. — Berlin: Borntraeger.

    Google Scholar 

  • Southworth, D., 1988: Isolation of exines from gymnosperm pollen. — Amer. J. Bot.75: 15–21.

    Google Scholar 

  • Speranza, A., Calzoni, G. L., Pacini, E., 1997: Occurrence of mono- or disaccharides and polysaccharide reserves in mature pollen grains. — Sexual Pl. Reprod.10: 110–115.

    Google Scholar 

  • Stanley, R. G., Linskens, H. F., 1974: Pollen: biology, biochemistry, management. — Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Takaso, T., Owens, J. N., 1996: Ovulate cone, pollination drop, and pollen capture inSequoiodendrum (Taxodiaceae). — Amer. J. Bot.83: 1175–1180.

    Google Scholar 

  • Tang, W., 1987: Heat production in cycad cones. — Bot. Gaz.148: 165–174.

    Google Scholar 

  • Thanikaimoni, G., 1986: Pollen apertures: form and function. — InBlackmore, S., Ferguson, I. K., (Eds): Pollen and spores, form and function, pp. 119–136. — London: Academic Press.

    Google Scholar 

  • Tomlinson, P. B., 1994: Functional morphology of saccate pollen in Conifers with special reference toPodocarpaceae. — Int. J. Pl. Sci.155: 699–715.

    Google Scholar 

  • Ueno, J., 1959: Some palynological observations ofTaxaceae, Cupressaceae andAraucariaceae. — J. Inst. Polytechn. Osaka City Univ., Ser. D, Biol.10: 75–87.

    Google Scholar 

  • —, 1960: On the fine structure of the cell walls of some gymnosperm pollen. — Biol. J. Nara Women's Univ.10: 19–25.

    Google Scholar 

  • Zavada, M., 1983: Comparative morphology of monocot pollen and evolutionary trends of apertures and wall structures. — Bot. Rev.49: 331–379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacini, E., Franchi, G.G. & Ripaccioli, M. Ripe pollen structure and histochemistry of some gymnosperms. Pl Syst Evol 217, 81–99 (1999). https://doi.org/10.1007/BF00984923

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984923

Key words

Navigation