Advertisement

Plant Systematics and Evolution

, Volume 217, Issue 1–2, pp 31–42 | Cite as

Distribution of a 375 bp repeat sequence inAllium (Alliaceae) as revealed by FISH

  • M. Stevenson
  • S. J. Armstrong
  • G. H. Jones
  • B. V. Ford-Lloyd
Article

Abstract

Information about evolutionary relationships between species of the genusAllium is desirable in order to facilitate breeding programmes. One approach is to study the distribution of repetitive DNA sequences among species thought on taxonomic grounds, to be closely related. We have used fluorescent in-situ hybridisation (FISH) to examine seven species within sect.Cepa of the genus (A. altaicum, A. cepa, A. fistulosum, A. galanthum, A. pskemense, A. oschaninii andA. vavilovii), one species from sect.Rhizirideum (A. roylei), two species from sect.Allium (A. sativum andA. porrum) and one species from sect.Schoenoprasum (A. schoenoprasum). Each species was probed using a 375 bp repeat sequence isolated fromA. cepa (Barnes & al. 1985), which was generated and labelled by polymerase chain reaction (PCR). No signals were detected in anyAllium species not belonging to sect.Cepa with the exception ofA. roylei, whose designation in sect.Rhizirideum is now questioned. Within sect.Cepa the probe was found to hybridize to the ‘terminal’ regions of the chromosome arms of all the species examined. In addition a number of interstitial bands were detected. Use of FISH reveals a more detailed map of the location of the repeat sequences than has previously been obtained by C-banding and other staining procedures. The distribution of the terminal and interstitial sites when compared, allow us to identify three species groups namely,A. altaicum andA. fistulosum; A. cepa, A. roylei, A. oschaninii andA. vavilovii; andA. galanthum andA. pskemense.

Key words

Alliaceae Allium Fluorescent in-situ hybridisation cytotaxonomy telomeric repeat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anamthawat-Jónsson, K., Heslop-Harrison, J. S., 1993: Isolation and characterization of genome-specific DNA sequences inTriticeae species. — Molec. Gen. Genet.240: 151–158.PubMedGoogle Scholar
  2. Armstrong, S. J., 1992: Chromosome staining techniques and interspecific hybridization in the genusAllium, sectionsCepa Miller (Prokh.) andSchoenoprasum (Dumort.). — Ph.D Thesis, University of Birmingham.Google Scholar
  3. Barnes, S. R., James, A. M., Jamieson, G., 1985: The organization, nucleotide sequence and chromosomal distribution of a satellite DNA fromAllium cepa. — Chromosoma92: 185–192.Google Scholar
  4. Bedbrook, J. R., Jones, J., O'Dell, M., Thompson, R. D., Flavell, R. B., 1980: A molecular description of telomeric heterochromatin inSecale species — Cell19: 545–560.PubMedGoogle Scholar
  5. Biessmann, H., Mason, J. M., 1990: Chromosome ends inDrosophila without telomeric DNA sequences. — Proc. Natl. Acad. Sci. USA87: 1758–1761.PubMedGoogle Scholar
  6. de Vries, J. N., 1990: Onion chromosome nomenclature and homeology relationships — workshop report. — Euphytica49: 1–3.Google Scholar
  7. -Jongerius, M. C., 1988: Interstitial C-bands on the chromosomes ofAllium species from sectionCeba. — Proceedings of the Fourth EUCARPIA Allium Symposium, Warwick, pp. 71–78.Google Scholar
  8. —, 1992: Introgression of leaf blight fromAllium roylei Stearn into onion (A. cepa L.). — Euphytica62: 127–133.Google Scholar
  9. El-Gadi, A., Elkington, T. T., 1975: Comparison of the Giemsa C-band karyotypes and the relationships ofAllium cepa, A. fistulosum andA. galanthum. — Chromosoma51: 19–23.Google Scholar
  10. Hanelt, P., 1990: Taxonomy, evolution, and history. — InRabinowitch, H. D., Brewster, J. L., (Eds): Onions and allied crops.1 pp. 1–26. — Boca Raton, FL.: CRC Press.Google Scholar
  11. Havey, M. J., 1992: Restriction enzyme analysis of the chloroplast and nuclear 45s ribosomal DNA ofAllium sectionsCepa andPhyllodolon (Alliaceae). — Pl. Syst. Evol.183: 17–31.Google Scholar
  12. Inada, I., Endo, M., 1994: C-banded karyotype analysis ofAllium fistulosum andA. altaicum and their phylogenetic relationship. — J. Jap. Soc. Hort. Sci.63: 593–602.Google Scholar
  13. Irifune, K., Hiria, K., Zheng, J., Tanaka, R., 1995: Nucleotide sequence of a highly repeated DNA sequence and its chromosomal localization inAllium fistulosum. — Theor. Appl. Genet.90: 312–316.Google Scholar
  14. Jiang, J. M., Gill., B. A., 1994: New 18S. 26S ribosomal RNA gene loci: — chromosomal landmarks for the evolution of polyploid wheats., Chromosoma103: 179–185.PubMedGoogle Scholar
  15. Jones, R. N., 1991: Cytogenetics of Alliums. — InTsuchiya, T., Gupta, P. K., (Eds): Chromosome engineering in plants, pp. 215—227.Google Scholar
  16. Kalkman, J., 1984: Analysis of the C-band karyotype ofAllium cepa L. Standard system of nomenclature and polymorphism. — Genetica65: 141–148.Google Scholar
  17. Lapitan, N. L. V., Ganal, M. W., Tanksley, S. D., 1989: Somatic chromosome karyotype of tomato based on in situ hybridization of the TGR 1 satellite repeat. — Genome32: 992–998.Google Scholar
  18. McCollum, G. D., 1982: Experimental hybrids betweenAllium fistulosum andAllium roylei. — Bot. Gaz.143: 238–243.Google Scholar
  19. Pich, U., Schubert, I., 1993: Polymorphism of Legumin genes in inbred lines ofVicia faba. — Biol. Zentralbl.112: 342–350.Google Scholar
  20. —, 1996a: Closely relatedAllium species (Alliaceae) share a very similar satellite sequence. — Pl. Syst. Evol.202: 255–264.Google Scholar
  21. —, 1996b: How doAlliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? — Chromosome Res.4: 207–213.PubMedGoogle Scholar
  22. Rayburn, A. L., Gill, B. S., 1987: Molecular analysis of the D-genome of theTriticeae. — Theor. Appl. Genet.73: 385–388.Google Scholar
  23. Röder, M. S., Lapitan, N. L. V., Sorrells, M. E., Tanksley, S. D., 1993: Genetic and physical mapping of barley telomeres. — Molec. Gen. Genet.238: 294–302.PubMedGoogle Scholar
  24. van der Meer, Q. P., de Vries, J. N., 1990: An interspecific cross betweenAllium roylei Stearn andAllium cepa L., and it's backcross toA. cepa. — Euphytica47: 29–31.Google Scholar
  25. van Raamsdonk, L. W. D., Wietsma, W. A., de Vries, J. N., 1992: Crossing experiments inAllium L. sectionCepa. — Bot. J. Linn. Soc.109: 293–303.Google Scholar
  26. Smiech, M. P., Sandbrink, J. M., 1997: Introgression explains incongruence between nuclear and chloroplast DNA-based phylogenies inAllium sectionCepa. — Bot. J. Linn. Soc.123: 91–108.Google Scholar
  27. Vosa, C. G., 1976: Heterochromatic patterns inAllium. — Heredity36: 383–392.Google Scholar
  28. Wu, K. S., Tanksley, S. T., 1993: Genetic and physical mapping of telomeres and macrosatellites of rice. — Pl. Molec.22: 861–872.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • M. Stevenson
    • 1
  • S. J. Armstrong
    • 1
  • G. H. Jones
    • 1
  • B. V. Ford-Lloyd
    • 1
  1. 1.The University of BirminghamEdgbaston, BirminghamUK

Personalised recommendations