Plant Systematics and Evolution

, Volume 211, Issue 1–2, pp 103–112 | Cite as

Intralineage variation in the pattern ofrbcL nucleotide substitution

  • Jean-François Manen
  • Philippe Cuénoud
  • Maria D. P. Martinez


Variation in chloroplastrbcL sequences was studied in representative species of four different lineages: the tribeRubieae (Rubiaceae), and the generaDrosera (Droseraceae),Nothofagus (Nothofagaceae) andIlex (Aquifoliaceae). Each lineage has its particular non-overlapping set ofrbcL polymorphic sites, indicating that common unconstrainedrbcL sites are not shared. Large differences in the rate and pattern of nucleotide substitution are observed among the four lineages. The genusIlex has the lowest rate of substitution, the lowest transition/transversion ratio, the lowest synonymous/replacement ratio and the lowest number of substitutions at the third codon position. An apparent relationship of these measures to the age of the lineages is observed. The A + T content and codon use among the four lineages are very similar and, apparently, cannot account for the observed differences in patterns of nucleotide substitution. However, the A + T content of the two bases immediately flanking the polymorphic sites is higher inIlex than in the other lineages. This could be correlated with the transversion/transition bias observed inIlex. The particularly low synonymous/replacement ratio found inIlex could also be explained by the small population sizes of species in this genus.

Key words

Rubiaceae Rubieae Droseraceae Drosera Nothofagaceae Nothofagus Aquifoliaceae Ilex rbcnucleotide substitution pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, V. A., Williams, S. E., Chase, M. W., 1992: Carnivorous plants: phylogeny and structural evolution. — Science257: 1491–1495.PubMedGoogle Scholar
  2. —, 1994: Functional constraints andrbcL evidence for land plant phylogeny. — Ann. Missouri Bot. Gard.81: 534–567.Google Scholar
  3. Barraclough, T. G., Harvey, P. H., Nee, S., 1996: Rate ofrbcL gene sequence evolution and species diversification in flowering plants (angiosperms). — Proc. Roy. Soc. London Ser. B, Biol. Sci.263: 589–591.Google Scholar
  4. Bousquet, J., Strauss, S. H., Doerksen, A. H., Price, R. A., 1992: Extensive variation in evolutionary rate ofrbcL gene sequences among seed plants. — Proc. Natl. Acad. Sci. USA89: 7844–7848.PubMedGoogle Scholar
  5. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Klark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee, P. S., Swensen, S. M., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H. Jr.,Graham, S. W., Barett, S. C., Dayanandan, S., Albert, V. A., 1993: Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. — Ann. Missouri Bot. Gard.80: 528–580.Google Scholar
  6. Clegg, M. T., 1993: Chloroplast gene sequences and the study of land plant evolution. — Proc. Natl. Acad. Sci. USA90: 363–367.PubMedGoogle Scholar
  7. —,Learn, G. H. Jr.,Morton, B. R., 1994: Rates and patterns of chloroplast DNA evolution. — Proc. Natl. Acad. Sci. USA91: 6795–6801.PubMedGoogle Scholar
  8. Desalle, R., Freedman, T., Prager, E. M., Wilson, A. C., 1987: Tempo and mode of sequence evolution in mitochondrial DNA of HawaiianDrosophila. — J. Molec. Evol.26: 157–164.PubMedGoogle Scholar
  9. Frascaria, N., Maggia, L., Michaud, M., Bousquet, J., 1993: TherbcL gene sequence from chestnut indicates a slow rate of evolution in theFagaceae. — Genome36: 668–671.PubMedGoogle Scholar
  10. Gaut, B. S., Muse, S. V., Clark, W. D., Clegg, M. T., 1992: Relative rates of nucleotide substitution at therbcL locus of monocotyledonous plants. — J. Molec. Evol.35: 292–303.PubMedGoogle Scholar
  11. Ives, S. A., 1923: Maturation and germination of seeds ofIlex opaca. — Bot. Gaz.76: 60–77.Google Scholar
  12. Li, W.-H., 1993: Unbiased estimation of the rates of synonymous and nonsynonymous substitution. — J. Molec. Evol.36: 96–99.PubMedGoogle Scholar
  13. MacDonald, J. H., Kreitman, M., 1991: Adaptive protein evolution at theAdh locus inDrosophila. — Nature351: 652–654.PubMedGoogle Scholar
  14. Manen, J.-F., Natali, A., 1995: Comparison of the evolution ofrbcL and atpB-rbcL noncoding spacer sequence in a recent plant group, the tribeRubieae (Rubiaceae). — J. Molec. Evol.41: 920–927.PubMedGoogle Scholar
  15. —, 1996: The chloroplast atpB-rbcL spacer inRubiaceae. — Opera Bot. Belg.7: 51–57.Google Scholar
  16. —, 1994: Phylogeny ofRubiaceae-Rubieae inferred from the sequence of a cpDNA intergene region. — Pl. Syst. Evol.190: 195–211.Google Scholar
  17. Martin, H. A., 1977: The history ofIlex (Aquifoliaceae) with special reference to Australia: Evidence from pollen. — Austral. J. Bot.25: 655–673.Google Scholar
  18. Martin, P. G., Dowd, J. M., 1993: Using sequences ofrbcL to study phylogeny and biogeography ofNothofagus species. — Aust. Syst. Bot.6: 441–447.Google Scholar
  19. Miyashita, N. T., Innan, H. I., Terauchi, R., 1996: Intra- and interspecific variation of the alcohol dehydrogenase locus region in wild plantsArabis gemmifera andArabidopsis thaliana. — Molec. Biol. Evol.13: 433–436.PubMedGoogle Scholar
  20. Morton, B. R., 1993: Chloroplast DNA codon use: evidence for selection at thepsbA locus based on tRNA availability. — J. Molec. Evol.37: 273–280.PubMedGoogle Scholar
  21. —, 1994: Codon use and the rate of divergence of land plant chloroplast genes. — Molec. Biol. Evol.11: 231–238.PubMedGoogle Scholar
  22. —, 1995: Neighboring base composition and transversion/transition bias in a comparison of rice and maize chloroplast noncoding regions. — Proc. Natl. Acad. Sci. USA92: 9717–9721.PubMedGoogle Scholar
  23. —, 1995: Neighboring base composition is strongly correlated with base substitution bias in a region of the chloroplast genome. — J. Molec. Evol.41: 597–603.PubMedGoogle Scholar
  24. Muller, J., 1981: Fossil pollen records of extant angiosperms. — Bot. Rev.47: 1–142.Google Scholar
  25. Natali, A., Manen, J.-F., Ehrendorfer, F., 1995: Phylogeny of theRubiaceae-Rubioideae, in particular the tribeRubieae: evidence from a non-coding chloroplast DNA sequence. — Ann. Missouri Bot. Gard.82: 428–439.Google Scholar
  26. —, 1996: Tribal, generic and specific relationships in theRubioideae-Rubieae (Rubiaceae) based on sequence data of a cpDNA intergene region. — Opera Bot. Belg.7: 193–203.Google Scholar
  27. Ohta, T., 1973: Slightly deleterious mutant substitutions in evolution. — Nature246: 96–98.PubMedGoogle Scholar
  28. —, 1993: Amino acid substitution at theAdh locus ofDrosophila is facilited by small population size. — Proc. Natl. Acad. Sci. USA90: 4548–4551.PubMedGoogle Scholar
  29. Robbrecht, E., 1988: Tropical woodyRubiaceae. — Opera Bot. Belg.1: 1–171.Google Scholar
  30. Savolainen, V., 1995: Polyphylétisme desCelastrales et position phylogénétique desAquifoliaceae: approche moléculaire. — Thèse de doctorat, Université de Genéve.Google Scholar
  31. Soltis, P. S., Soltis, D. E., 1995: Plant molecular systematics: inferences of phylogeny and evolutionary processes. — Evol. Biol.28: 139–194.Google Scholar
  32. Swofford, D. L., 1991: PAUP: phylogenetic analysis using parsimony, version 3.1, computer program distributed by the Illinois Natural History Survey, Champaign, Illinois, USA.Google Scholar
  33. Williams, S. E., Albert, V. A., Chase, M. W., 1994: Relationships ofDroseraceae: a cladistic analysis ofrbcL sequence and morphological data. — Amer. J. Bot.81: 1027–1037.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Jean-François Manen
    • 1
  • Philippe Cuénoud
    • 1
  • Maria D. P. Martinez
    • 2
  1. 1.Conservatoire et Jardin BotaniquesUniversité de GenèveChambésy/GenéveSwitzerland
  2. 2.Centro de Estudios Farmacoloógicos y Botánicos (CEFyBO)Buenos AiresArgentina

Personalised recommendations