Plant Systematics and Evolution

, Volume 211, Issue 1–2, pp 57–70 | Cite as

RAPD evidence for a sister group relationship of the presumed progenitor-derivative species pairSenecio nebrodensis andS. viscosus (Asteraceae)

  • Dorothea M. L. Purps
  • Joachim W. Kadereit


The phylogenetic and phenetic analysis of 109 RAPD polymorphisms inS. nebrodensis, a perennial and self-incompatible endemic of four mountain ranges in Spain, andS. viscosus, a self-compatible annual widespread in Europe, as well asS. lividus, S. sylvaticus andS. vulgaris revealed a sister group relationship between the first two species. This result contrasts sharply with the earlier hypothesis based on isozyme variation thatS. viscosus originated from within a paraphyleticS. nebrodensis and that the two species represent a progenitor-derivative pair. After considering possible reasons for the sister group relationship found, including the possibility of rooting artefacts, it is concluded that neither the RAPD data nor the isozyme data allow to draw safe conclusions about the mode of speciation and therefore the relative age of the two species. As a consequence, the limited genetic variation ofS. viscosus in comparison toS. nebrodensis as revealed by both the RAPD and the isozyme data may reflect its population history, geographical distribution, reproductive ecology, or mode of dispersal just as well as its recent origin from a paraphyleticS. nebrodensis. The result of this study calls for a critical reexamination of other taxon pairs postulated to have a progenitor-derivative relationship on the basis of isozyme evidence.

Key words

Asteraceae Senecio nebrodensis S. viscosus RAPDs isozyme variation progenitor-derivative species infraspecific phylogeny speciation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, J. C. M., 1979: The Mediterranean species ofSenecio SectionsSenecio andDelphinifolius. — Notes Roy. Bot. Gard. Edinburgh37: 387–428.Google Scholar
  2. Avise, J. C., 1994: Molecular markers, natural history and evolution. — New York: Chapman & Hall.Google Scholar
  3. Bachmann, K., 1994: Molecular markers in plant ecology. — New Phytol.126: 403–418.Google Scholar
  4. Barkley, T. M., 1928:Senecio. — In: North American Flora II,10, pp. 50–139. — New York: New York Botanical Garden.Google Scholar
  5. Baruffi, L., Damaiani, G., Gulielmino, C. R., Bandi, C., Malacrida, A. R., Gasperi, G., 1995: Polymorphism within and between populations ofCeratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. — Heredity74: 425–437.PubMedGoogle Scholar
  6. Barrett, S. C. H., Shore, J. S., 1989: Isozyme variation in colonizing plants. — InSoltis, D. E., Soltis, P. S., (Eds): Isozymes in plant biology, pp. 106–126. — Portland, OR: Dioscorides Press.Google Scholar
  7. Brauner, S., Crawford, D. J., Stuessy, T. F., 1992: Ribosomal DNA and RAPD variation in the rare plant familyLactoridaceae. — Amer. J. Bot.79: 1436–1439.Google Scholar
  8. Catalán, P., 1995: Molecular phylogeny of the grass genusBrachypodium P. Beauv. based on RFLP and RAPD analysis. — Bot. J. Linn. Soc.117: 263–280.Google Scholar
  9. Crawford, D. J., Smith, E. B., 1982: Allozyme divergence betweenCoreopsis basalis andC. wrightii (Compositae). — Syst. Bot.7: 359–364.Google Scholar
  10. —, 1985: Allozyme variation within and betweenLasthenia minor and its derivative speciesL. maritima (Asteraceae). — Amer. J. Bot.72: 1177–1184.Google Scholar
  11. —, 1993: Use of RAPD markers to document the origin of the intergeneric hybrid ×Margyracaena skottsbergii (Rosaceae) on the Juan Fernandez Islands. — Amer. J. Bot.80: 89–92.Google Scholar
  12. Crossland, S., Coates, D., Grahame, J., Mill, P. J., 1993: Use of random amplified polymorphic DNAs (RAPDs) in separating two sibling species ofLittorina. — Mar. Ecol. Progr. Ser.96: 301–305.Google Scholar
  13. Doyle, J. J., 1995: The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. — Syst. Bot.20: 574–588.Google Scholar
  14. —, 1987: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. — Phytochem. Bull.19: 11–15.Google Scholar
  15. Ehrlich, P. R., Raven, P. H., 1969: Differentiation of populations. — Science165: 1228–1232.PubMedGoogle Scholar
  16. Emig, W., Kadereit, J. W., 1993: The comparative biology of the closely relatedSenecio nebrodensis andS. viscosus, a narrow endemic and a widespread ruderal. — Nordic J. Bot.13: 369–375.Google Scholar
  17. Felsenstein, J., 1993: PHYLIP: phylogeny inference package, version 3.5s. — Seattle, WA: Department of Genetics, University of Washington.Google Scholar
  18. Gottlieb, L. D., 1973: Genetic differentiation, sympatric speciation and the origin of a diploid species ofStephanomeria. — Amer. J. Bot.60: 545–553.Google Scholar
  19. —, 1974: Genetic confirmation of the origin ofClarkia lingulata. — Evolution27: 205–214.Google Scholar
  20. —, 1976: Genetic similarity betweenGaura longiflora and its obligately outcrossing derivativeG. demareei. — Syst. Bot.1: 181–187.Google Scholar
  21. —, 1985: Morphological and electrophoretic divergence betweenLayia discoidea andL. glandulosa. — Syst. Bot.10: 484–495.Google Scholar
  22. Hamrick, J. L., 1989: Isozymes and the analysis of genetic structure in plant populations. — InSoltis, D. E., Soltis, P. S., (Eds): Isozymes in plant biology, pp. 87–105. — Portland, OR: Dioscorides Press.Google Scholar
  23. Harris, S. A., 1995: Systematics and randomly amplified polymorphic DNA in the genusLeucaena (Leguminosae, Mimosoideae). — Pl. Syst. Evol.197: 195–208.Google Scholar
  24. Kadereit, J. W., 1984: The origin ofSenecio vulgaris (Asteraceae). — Pl. Syst. Evol.145: 135–153.Google Scholar
  25. —, 1995: Chloroplast DNA and isozyme analysis of the progenitor-derivative species relationship betweenSenecio nebrodensis andS. viscosus (Asteraceae). — Amer. J. Bot.82: 1179–1185.Google Scholar
  26. Karron, J. D., 1987: A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. — Evol. Ecol.1: 47–58.Google Scholar
  27. Lannér, C., Bryngelsson, T., Gustafsson, M., 1996: Genetic validity of RAPD markers at the intra- and inter-specific level in wildBrassica species with n = 9. — Theor. Appl. Genet.93: 9–14.Google Scholar
  28. Levin, D. A., 1993: Local speciation in plants: the rule not the exception. — Syst. Bot.18: 197–208.Google Scholar
  29. Li, W.-H., 1993: So, what about the molecular clock hypothesis? — Curr. Opin. Genet. Develop.3: 896–901.Google Scholar
  30. Loveless, M. D., Hamrick, J. L., 1988: Genetic organization and evolutionary history in two north American species ofCirsium. — Evolution42: 254–265.Google Scholar
  31. Maddison, W., 1995: Phylogenetic histories within and among species. — InHoch, P. C., Stephenson, A. G., (Eds): Experimental and molecular approaches to plant biosystematics. — Monographs in Systematic Botany from the Missouri Botanical Garden Vol.53, pp. 273–287. — St. Louis, MO: Missouri Botanical Garden.Google Scholar
  32. —, 1992: MacClade: Analysis of phylogeny and character evolution, version 3.05. — Sunderland, MA: Sinauer.Google Scholar
  33. Meusel, H., Jäger, E. J., 1992: Vergleichende Chorologie der Zentraleuropäischen Flora, 3. — Jena: G. Fischer.Google Scholar
  34. M'Ribu, H. K., Hilu, K. W., 1994: Detection of interspecific and intraspecific variation inPanicum millets through random amplified polymorphic DNA. — Theor. Appl. Genet.88: 412–416.Google Scholar
  35. Nei, M., 1972: Genetic distance between populations. — Amer. Naturalist106: 283–292.Google Scholar
  36. Neigel, J. E., Avise, J. C., 1986: Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. — InNevo, E., Karlin, S., (Eds): Evolutionary processes and theory, pp. 515–534. — New York: Academic Press.Google Scholar
  37. Pleasants, J. M., Wendel, J. F., 1989: Genetic diversity in a clonal narrow endemic,Erythronium propullans, and in its widespread progenitor,Erythronium albidum. — Amer. J. Bot.76: 1136–1151.Google Scholar
  38. Purdy, B. G., Bayer, R. J., 1995a: Allozyme variation in the Athabasca sand dune endemic,Salix silicicola, and the closely related widespread species,S. alaxensis. — Syst. Bot.20: 179–190.Google Scholar
  39. —, 1995b: Genetic diversity in the tetraploid sand dune endemicDeschampsia mackenzieana and its widespread diploid progenitorD. cespitosa (Poaceae). — Amer. J. Bot.82: 121–130.Google Scholar
  40. —, 1994: Genetic variation, breeding system evolution, and conservation of the narrow sand dune endemicStellaria arenicola and the widespreadS. longipes (Caryophyllaceae). — Amer. J. Bot.81: 904–911.Google Scholar
  41. Ranker, T. A., Schnabel, A. F., 1986: Allozymic and morphological evidence for a progenitor-derivative species pair inCamassia (Liliaceae). — Syst. Bot.11: 433–445.Google Scholar
  42. Rick, C. M., Kesicki, E., Fobes, J. F., Holle, M., 1976: Genetic and biosystematic studies of two new sibling species ofLycopersicon from interandean Peru. — Theor. Appl. Genet.47: 55–68.Google Scholar
  43. Rieseberg, L. H., 1996: Homology among RAPD fragments in interspecific comparisons. — Molec. Ecol.5: 99–105.Google Scholar
  44. —, 1994: Are many plant species paraphyletic? — Taxon43: 21–32.Google Scholar
  45. —, 1987: Genetic divergence and isozyme number variation among four varieties ofAllium douglasii (Alliaceae). — Amer. J. Bot.74: 1614–1624.Google Scholar
  46. Rohlf, F. J., 1990: NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 1.60. — New York: Department of Ecology and Evolution, State University, New York.Google Scholar
  47. Spooner, D. M., Tivang, J., Nienhuis, J., Miller, J. T., Douches, D. S., Contreras, M. A., 1996: Comparison of four molecular markers in measuring relationships among the wild potato relativesSolanum sectionEtuberosum (subgenusPotatoe). — Theor. Appl. Genet.92: 532–540.Google Scholar
  48. Sulaiman, I. M., Hasnain, S. E., 1996: Random amplified polymorphic DNA (RAPD) markers reveal genetic homogeneity in the endangered Himalayan speciesMeconopsis paniculata andM. simplicifolia. — Theor. Appl. Genet.93: 91–96.Google Scholar
  49. Swofford, D. L., 1993: PAUP: phylogenetic analysis using parsimony, version 3.1.1. — Washington, DC: Smithsonian Institution, Laboratory of Molecular Systematics.Google Scholar
  50. Van Buren, R., Harper, K. T., Andersen, W. R., Stanton, D. J., Seyoum, S., Engl, J. L., 1994: Evaluating the relationship of autumn buttercup (Ranunculus acriformis var.aestivalis) to some close congeners using random amplified polymorphic DNA. — Amer. J. Bot.81: 514–519.Google Scholar
  51. Van de Zande, L., Bijlsma, R., 1995: Limitations of the RAPD technique in phylogeny reconstruction inDrosophila. — J. Evol. Biol.8: 645–656.Google Scholar
  52. Van Heusden, A. W., Bachmann, K., 1992: Genotype relationships inMicroseris elegans (Asteraceae, Lactuceae) revealed by DNA amplification from arbitrary primers (RAPDs). — Pl. Syst. Evol.179: 221–233.Google Scholar
  53. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., Tingey, S. V., 1990: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. — Nucl. Acids Res.18: 6531–6535.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Dorothea M. L. Purps
    • 1
  • Joachim W. Kadereit
    • 1
  1. 1.Institut für Spezielle BotanikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations