Advertisement

Plant Systematics and Evolution

, Volume 210, Issue 1–2, pp 57–86 | Cite as

Evolution of genome size inAllium (Alliaceae)

  • D. Ohri
  • R. M. Fritsch
  • P. Hanelt
Article

Abstract

The 4C DNA amounts of 86 species fromAllium subgg.Allium, Rhizirideum, Bromatorrhiza, Melanocrommyum, Caloscordum andAmerallium show a 8.35-fold difference ranging from 35.60 pg (A. ledebourianum, 2n = 16) to 297.13 pg (A. validum 2n = 56). At diploid level the difference is 3.57-fold betweenA. ledebourianum (35.60 pg) andA. ursinum (127.14 pg). This shows that a significant loss and/or gain of DNA has occurred during evolution. On average subgg.Rhizirideum andAllium have less DNA amount than subgg.Melanocrommyum andAmerallium. The distribution of nuclear DNA amounts does not show discontinuous pattern and regular groups. The evolution of genome size has been discussed in relation to polyploidy and genomes, heterochromatin, adaptive changes in morphological characteristics, phenology and ecological factors, and infrageneric classification.

Key words

Alliaceae Allium Nuclear DNA amount adaptation evolution infrageneric classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, L. K., Stack, S. M., Fox, M. H., Zhang, C., 1985: The relationship between genome size and synaptonemal complex length in higher plants. — Exp. Cell Res.156: 367–377.PubMedGoogle Scholar
  2. Arumuganathan, K., Earle, E. D., 1991: Estimation of nuclear DNA content of plants by flow cytometry. — Pl. Cell Molec. Biol. Reporter9: 229–233.Google Scholar
  3. Badr, A., Elkington, T. T., 1977: Variation of Giemsa C-banded and fluorochrome banded karyotypes, and relationship inAllium subgen.Molium. — Pl. Syst. Evol.129: 23–35.Google Scholar
  4. —, 1978: Numerical taxonomy of species inAllium subgenusMolium. — New Phytol.81: 401–407.Google Scholar
  5. Bennett, M. D., 1971: The duration of meiosis. — Proc. Roy. Soc. London, Ser. Biol. Sci.178: 277–299.Google Scholar
  6. —, 1972: Nuclear DNA content and minimum generation time in herbaceous plants. — Proc. Roy, Soc. London, Ser. B, Biol. Sci.181: 109–135.Google Scholar
  7. —, 1995: Nuclear DNA amounts in angiosperms. — Ann. Bot.76: 113–176.Google Scholar
  8. Bösen, H., Nagl, W., 1978: Short duration of mitotic and endomitotic cell cycle in the heterochromatin rich monocotAllium carinatum. — Cell Biol. Int. Rep.2: 565–571.PubMedGoogle Scholar
  9. Cai, Q., Chinnappa, C. C., 1987: Giemsa C-banded karyotypes of seven North American species ofAllium. — Amer. J. Bot.74: 1087–1092.Google Scholar
  10. Chakravarti, B., Sen, B., 1992: DNA and protein contents in different varieties ofAllium cepa andAllium sativum. —Allium Improv. Newslett.1: 61–65.Google Scholar
  11. Cheremushkina, V. A., 1992: Evolution of life forms of species in subgenusRhizirideum (Koch)Wendelbo, genusAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 27–34. — Gatersleben: IPK.Google Scholar
  12. Chool, W. J., 1971: Variation in nuclear DNA content in the genusVicia. — Genetics68: 195–211.Google Scholar
  13. Doležel, J., Sgorbati, S., Lucretti, S., 1992: Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. — Physiol. Pl.85: 625–631.Google Scholar
  14. Druselmann, S., 1992: Vergleichende Untersuchungen an Vertretern derAlliaceae Agardh 1. Morphologie der Keimpflanzen der GattungAllium L. — Flora186: 37–52.Google Scholar
  15. Ekberg, L., 1972: Studies in the genusAllium VI. Bulb structure in the subgenusMelanocrommyum. — Bot. Not.125: 93–101.Google Scholar
  16. El-Gadi, A., Elkington, T. T., 1975: Comparison of the Giemsa C-band karyotypes and the relationships ofAllium cepa, A. fistulosum andA. galanthum. — Chromosoma51: 19–23.Google Scholar
  17. —, 1977: Numerical taxonomic studies on species inAllium subgenusRhizirideum. — New Phytol.79: 183–201.Google Scholar
  18. Evans, I. J., James, A. M., Barnes, S.R., 1983: Organization and evolution of repeated DNA sequence in closely related plant genomes. — J. Molec. Biol.170: 803–826.PubMedGoogle Scholar
  19. Friesen, N., 1992: Systematics of the Siberian polyploid complex in subgenusRhizirideum (Allium). — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 55–66. — Gatersleben: IPK.Google Scholar
  20. —, 1994: Allotetraploid origin ofAllium altyncolicum Friesen (sectionSchoenoprasum) as evidenced by C-banding. — Abstract book, Kew Chromosome Conference IV, p. 68. — Richmond: Royal Botanic Gardens, Kew.Google Scholar
  21. —, 1993: Quantitative phytogeography of the genusAllium in Siberia and Mongolia. — Nordic J. Bot.13: 295–307.Google Scholar
  22. Fritsch, R. M., 1988: Anatomische Untersuchungen an der Blattspreite beiAllium L. (Alliaceae) I. Arten mit einer einfachen Leitbündelreihe. — Flora181: 83–100.Google Scholar
  23. —, 1990: Bericht über Sammelreisen in Tadzhikistan (1983–1988) zum Studium von mittelasiatischen Vertretern der GattungAllium I. — Kulturpflanze38: 363–385.Google Scholar
  24. —, 1992a: Infra-subgeneric grouping in subgenusMelanocrommyum (Webb etBerth)Rouy. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 67–75. — Gatersleben: IPK.Google Scholar
  25. —, 1992b: Septal nectaries in the genusAllium — shape position and excretory canals. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 77–85. — Gatersleben: IPK.Google Scholar
  26. —, 1993: Anatomische Merkmale des Blütenschaftes in der GattungAllium L. und ihre systematische Bedeutung. — Bot. Jahrb. Syst.115: 97–131.Google Scholar
  27. Greilhuber, J., 1995: Chromosomes of the monocotyledons (general aspects). — InRudall, P. J., Cribb, P. J., Cutler, D. F., Humphries, C. J., (Eds): Monocotyledons: systematics and evolution, pp. 379–414. — Richmond: Royal Botanic Gardens, Kew.Google Scholar
  28. Grime, J. P., 1983: Prediction of weed and crop response to climate based upon measurements of DNA content. — Aspects Appl. Biol.4: 87–98.Google Scholar
  29. —, 1990: Ecological effects of climate change on plant populations and vegetative composition with particular reference to the British Flora. — InJackson, M., Ford, B. V., Parry, M. L., (Eds): Climatic change and plant genetic resources, pp. 40–60. — London: Belhaven Press.Google Scholar
  30. —, 1982: Variation in genome size, an ecological interpretation. — Nature299: 151–153.Google Scholar
  31. —, 1985: Nuclear DNA amounts, shoot phenology and species coexistence in a limestone community. — New Phytol.100: 435–445.Google Scholar
  32. Hanelt, P., 1985: Zur Taxonomie, Chorologie und Ökologie der Wildarten vonAllium L. sectt.Cepa (Mill.)Prokh. — Flora176: 99–116.Google Scholar
  33. —, 1990: Taxonomy, evolution and history. — InRabinowitch, H., Brewster, J. L., (Eds): Onions and allied crops,1, pp. 1–26. — Florida: CRC.Google Scholar
  34. —, 1992: Ovule number and seed weight in the genusAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 99–105. — Gatersleben: IPK.Google Scholar
  35. —, 1994: Notes on some infrageneric taxa inAllium L. — Kew Bull.49: 559–564.Google Scholar
  36. —, (Eds), 1992a: The genusAllium-taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991. — Gatersleben: IPK.Google Scholar
  37. —, 1992b: Infrageneric grouping ofAllium — The Gatersleben approach. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991 pp. 107–123. — Gatersleben: IPK.Google Scholar
  38. Havey, M. J., 1992: Restriction enzyme analysis of the chloroplast and nuclear 45s ribosomal DNA ofAllium sectionsCepa andPhyllodolon (Alliaceae). — Pl. Syst. Evol.183: 17–31.Google Scholar
  39. Jones, R. N., Brown, L. M., 1976: Chromosome evolution and DNA variation inCrepis. — Heredity36: 91–104.Google Scholar
  40. —, 1968: Nuclear DNA variation inAllium. — Heredity23: 591–605.Google Scholar
  41. Kamenetsky, I., 1992: Morphological types and root systems as indicators of evolutionary pathways in the genusAllium. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 129–135. — Gatersleben: IPK.Google Scholar
  42. Khassanov, F. O., Fritsch, R. M., 1994: New taxa inAllium L. subg.Melanocrommyum (Webb etBerth.)Rouy from Central Asia. — Linzer Biol. Beitr.26: 965–990.Google Scholar
  43. Kriebitzsch, W. U., 1992: Der CO2 und H2O Gasaustausch von Pflanzen in der Krautschicht eines Kalkbuchenwaldes in Abhängigkeit von Standortsfaktoren. I. Lichtabhängigkeit der Photosynthese im Jahresgang. — Flora186: 67–85.Google Scholar
  44. Kruse, J., 1992: Growth from characters and their variation inAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 173–179. — Gatersleben: IPK.Google Scholar
  45. —, 1994: Rasterelektronenmikroskopische Untersuchungen an Samen der GattungAllium L. IV. — Feddes Repert.105: 457–479.Google Scholar
  46. Labani, R. M., Elkington, T. T., 1987: Nuclear DNA variation in the genusAllium L. (Liliaceae). — Heredity59: 119–128.Google Scholar
  47. Linne von Berg, G., Samoylov, A., Klaas, M., Hanelt, P., 1996: Chloroplast DNA restriction analysis and the infrageneric grouping inAllium L. — Pl. Syst. Evol.200: 253–261.Google Scholar
  48. Maass, H. I., 1992: Electrophoretic study of storage proteins in the genusAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 183–189. — Gatersleben: IPK.Google Scholar
  49. Martin, P. G., Shanks, R., 1966: DoesVicia faba have multistranded chromosomes? — Nature211: 650–651.Google Scholar
  50. Mettin, D., Hanelt, P., 1973: Über Speziationsvorgänge in der GattungVicia L. — Kulturpflanze21: 25–54.Google Scholar
  51. Murin, A., 1976: Polyploidy and mitotic cycle. — Nucleus19: 192–195.Google Scholar
  52. Murray, B. G., Cameron, E. K., Standring, L. G., 1992: Chromosome numbers, karyotypes, and nuclear DNA variation inPratia Gaudin (Lobeliaceae). — New Zealand J. Bot.30: 187–197.Google Scholar
  53. Nagl, W., Fusenig, H. P., 1979: Types of chromatin organization in plant nuclei. — Pl. Syst. Evol., Suppl.2: 221–233.Google Scholar
  54. Nanush'yan, E. R., Polyakov, V., J., 1989: Zavisimost mezhdu kolichestvom DNA, tolshchinoj mitoticheskih khromosom i ob“emom pyl'tsevykh zeren u nekotorykh vidov rodaAllium L. — Biol. Nauki (Moskva)8: 50–56.Google Scholar
  55. Narayan, R. K. J., 1982: Discontinuous DNA variation in the evolution of plant species. The genusLathyrus. — Evolution36: 877–891.Google Scholar
  56. —, 1985: Discontinuous DNA variation in the evolution of plant species. — J. Genet.64: 101–109.Google Scholar
  57. —, 1987: Nuclear DNA changes, genome differentiation and evolution inNicotiana (Solanaceae). — Pl. Syst. Evol.157: 161–180.Google Scholar
  58. —, 1988a: Constraints upon the organization and evolution of chromosomes inAllium. — Theor. Appl. Genet.75: 319–329.Google Scholar
  59. —, 1988b: Evolutionary significance of DNA variation in plants. — Evol. Trends Pl.2: 121–130.Google Scholar
  60. Nath, P., Ohri, D., Pal, M., 1992: Nuclear DNA content inCelosia (Amaranthaceae). — Pl. Syst. Evol.182: 253–257.Google Scholar
  61. Nomura, Y., Oosawa, K., 1990: Production of interspecific hybrids betweenAllium chinense andA. thunbergii by in vitro ovule embryo culture. — Jap. J. Breed.40: 531–535.Google Scholar
  62. Ohle, H., 1992: Karyotype analysis using Giemsa C-banding technique inAllium species of six sections of the subgenusRhizirideum. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 221–232. — Gatersleben: IPK.Google Scholar
  63. Ohri, D., Khoshoo, T. N., 1986: Plant DNA contents and systematics. — InDutta, S. K., (Ed.): DNA systematics,2, plants, pp. 2–19. — Florida: CRC.Google Scholar
  64. —, 1991: The origin of chickpea (Cicer arietinum L.): karyotype and nuclear DNA amounts. — Heredity66: 367–372.Google Scholar
  65. Olszewska, M. J., Osiecka, R., 1982: The relationship between 2c DNA content, life cycle type, systematic position, and the level of DNA endoreduplication in nuclei of parenchyma cells during growth and differentiation of roots in some monocotyledonous species. — Biochem. Physiol. Pflanzen177: 319–336.Google Scholar
  66. Özhatay, N., 1983: Cytotaxonomic studies on the genusAllium in European Turkey and around Istanbul. I Sect.Molium andScorodon. — J. Fac. Pharm. Istanbul19: 25–36.Google Scholar
  67. —, 1984: Cytotaxonomic studies on the genusAllium in European Turkey and around Istanbul III Sect.Allium and sectt.Melanocrommyum. — J. Fac. Pharm.20: 43–65.Google Scholar
  68. Pastor, J., 1982: Karyology ofAllium species from the Iberian Peninsula. — Phyton (Horn, Austria)22: 171–200.Google Scholar
  69. —, 1985: Bulb structure in some species ofAllium (Liliaceae) of Iberian Peninsula. — Ann. Musei Goulandris7: 249–261.Google Scholar
  70. Peffley, E., 1986: Evidence for chromosomal differentiation ofAllium fistulosum andA. cepa. — J. Amer. Soc. Hort. Sci.111: 126–129.Google Scholar
  71. Pistrick, K., 1992: Phenological variability in the genusAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 243–249. — Gatersleben: IPK.Google Scholar
  72. Poggio, L., Burghardt, A. D., Hunziker, J. H., 1989: Nuclear DNA variation in diploid and polyploid taxa ofLarrea (Zygophyllaceae). — Heredity63: 321–328.Google Scholar
  73. Price, H. J., 1976: Evolution of DNA content in higher plants. — Bot. Rev.42: 27–52.Google Scholar
  74. Raamsdonk, L. W. D., van De Vries, T., 1992: Biosystematic studies inAllium L. sectionCepa. — Bot. J. Linn. Soc.109: 131–143.Google Scholar
  75. —, 1992: Crossing experiments inAllium L. sectionCepa. — Bot. J. Linn. Soc.109: 293–303.Google Scholar
  76. Raina, S. N., 1990: Genome organization and evolution in the genusVicia. — InKawano, S., (Ed.): Biological approaches and evolutionary trends in plants, pp. 183–201. — London: Academic Press.Google Scholar
  77. —, 1983: DNA variation between and within chromosome complements ofVicia species. — Heredity51: 335–346.Google Scholar
  78. —, 1986: Nuclear DNA variation inTephrosia. — Genetics69: 27–33.Google Scholar
  79. Ranjekar, P. K., Pallotta, D., Lafontaine, J. G., 1978: Analysis of plant genomes V. Comparative study of molecular properties of DNAs of sevenAllium species. — Biochem. Genet.16: 957–970.PubMedGoogle Scholar
  80. Rothfels, K., Sexsmith, E., Heimburger, M., Kruse, M. O., 1966: Chromosome size and DNA content of species ofAnemone L. and related genera (Ranunculaceae). — Chromosoma20: 54–74.Google Scholar
  81. Samoylov, A., Klaas, M., Hanelt, P., 1995: Use of chloroplast DNA polymorphisms for the phylogenetic study of the subgeneraAmerallium andBromatorrhiza (genusAllium). — Feddes Repert.106: 161–167.Google Scholar
  82. Stearn, W. T., 1946: Notes on the genusAllium in the Old World. — Herbertia11: 11–34.Google Scholar
  83. —, 1992: How many species ofAllium are known? — Kew Mag.9: 180–181.Google Scholar
  84. Tardif, B., Morisset, R., 1991: Chromosomal C-band variation inAllium schoenoprasum (Liliaceae) in eastern North America. — Pl. Syst. Evol.174: 125–137.Google Scholar
  85. Thompson, K., 1990: Genome size and germination temperature in herbaceous angiosperms. — Evol. Trends Pl.4: 113–116.Google Scholar
  86. Traub, H. P., 1968: The subgenera, sections and subsections ofAllium. — Pl. Life24: 147–163.Google Scholar
  87. Ulrich, I., Fritz, B., Ulrich, W., 1988: Application of DNA fluorochromes for flow cytometric DNA analysis of plant protoplasts. — Pl. Sci.55: 151–158.Google Scholar
  88. Vakhtina, L. I., Zakirova, R. O., Vakhtin, Y. B., 1977: Interspecific differences in DNA contents and taxonomically valid characters inAllium L. (Liliaceae). — Bot. Zhurn. (Moscow & Leningrad)62: 667–684. (In Russian.)Google Scholar
  89. Van't Hof, J., 1965: Relationship between mitotic cycle duration, S period duration and average rate of DNA synthesis in the root meristem cells of several plants. — Exp. Cell. Res.39: 45–58.Google Scholar
  90. Verma, R. S., Lin, M. S., 1979: The duration of DNA synthetic (S) period inZea mays: a genetic control. — Theor. Appl. Genet.54: 277–282.Google Scholar
  91. Vosa, C. G., 1976a: Heterochromatic patterns inAllium I. The relationship between the species of theCepa group and its allies. — Heredity36: 383–392.Google Scholar
  92. —, 1976b: Heterochromatic patterns inAllium II. Heterochromatic variation in species of thePaniculatum group. — Chromosoma57: 119–133.Google Scholar
  93. De Vries, J. N., Jongerius, M. C., 1988: Interstitial C-bands on the chromosomes ofAllium species from the sectionCepa. — In: Proceedings of Eucarpia 4thAllium Symposium, Sept. 6–9, 1988, pp. 71–78. — Wellesbourne, U. K.: Inst. Hortic. Res.Google Scholar
  94. Waldherr, M., 1992: Genomgrößen in der GattungAllium. — Diploma Thesis, University of Vienna.Google Scholar
  95. Walters, T. W., 1992: Rapid nuclear DNA content estimation forAllium spp. using flow cytometry. —Allium Improv. Newslett.2: 4–6.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • D. Ohri
    • 1
  • R. M. Fritsch
    • 1
  • P. Hanelt
    • 1
  1. 1.Institut für Pflanzengenetik und KulturpflanzenforschungGaterslebenGermany

Personalised recommendations