Plant Systematics and Evolution

, Volume 191, Issue 3–4, pp 183–198 | Cite as

Comparison of the Giemsa C-banded karyotypes of the three subspecies ofPsathyrostachys fragilis, subspp.villosus (2x),secaliformis (2x, 4x), andfragilis (2x) (Poaceae), with notes on chromosome pairing

  • Ib Linde-Laursen
  • Claus Baden
Article

Abstract

The karyotypes of diploidP. fragilis subsp.villosus (2n = 2x = 14) and tetraploid subsp.secaliformis (2n = 4x = 28) were studied by Giemsa C- and N-banding, and AgNO3 staining and compared with the karyotype of subsp.fragilis (2x). The complements of subsp.villosus and subsp.fragilis were similar, with 8 metacentric and 6 SAT-chromosomes, one metacentric and two submetacentric pairs, with small to minute, polymorphic, heterochromatic satellites. The complement of subsp.secaliformis on the whole agreed with a doubling of the complement of diploidP. fragilis, suggesting autopolyploidy. Only the presence of 12 nucleoli in interphases identified 6 SAT-chromosome pairs. In subsp.villosus one or two extra micronucleoli indicated a chromosome pair with very low nucleolusforming activity, bringing the number of SAT-chromosome pairs to 4. This number may be a characteristc ofPsathyrostachys. Besides very small, inconsistently observed bands, the C-banding pattern consisted of 0–3 small bands per chromosome at intercalary and terminal locations, and at NORs. The level of banding pattern polymorphism was low, but enough to indicate that the taxa are outbreeders. Similarities in chromosome morphology and C-banding patterns identified homology of all chromosomes of subsp.villosus, but for 12 pairs only in subsp.secaliformis. Between plants, reliable identification of homology and homoeology (subsp.secaliformis) was possible only for the SAT-chromosomes and the shortest metacentrics. Chromocentres were very small and the amount of constitutive heterochromatin was low. N-banding stained chromosomes uniformly. The basic karyotypes of theP. fragilis taxa were similar to those ofP. juncea, P. lanuginosa, andP. stoloniformis supporting a close relationship and the presence of a common genome, N. NORs had different nucleolus-forming activities. Meiotic analysis demonstrated a high level of bivalent pairing in the three taxa. A chromosomal rearrangement was suggested in subsp.villosus. The low multivalent frequency in subsp.secaliformis indicates the presence of a pairing regulation mechanism. The majority of chiasmata were interstitial. Pollen grain size discriminated between diploid and tetraploid taxa. The existence of a diploid cytotype of subsp.secaliformis is supported by pollen measurements of herbarium material.

Key words

Poaceae Psathyrostachys fragilis Cytotypes chromosome analysis Giemsa C-banding patterns autopolyploidy relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baden, C., 1991: A taxonomic revision ofPsathyrostachys (Poaceae). — Nordic J. Bot.11: 3–26.Google Scholar
  2. , 1989: Intergeneric hybridization betweenPsathyrostachys andHordeum. — Nordic J. Bot.9: 333–342.Google Scholar
  3. , 1990: A new Chinese species ofPsathyrostachys (Poaceae) with notes on its karyotype. — Nordic J. Bot.9: 449–460.Google Scholar
  4. Barkworth, M. E., Dewey, D. R., 1985: Genomically based genera in the perennialTriticeae of North America: identification and membership. — Amer. J. Bot.72: 767–776.Google Scholar
  5. Berdahl, J. D., Barker, R. E., 1991: Characterization of autotetraploid Russian wildrye produced with nitrous oxide. — Crop Sci.31: 1153–1155.Google Scholar
  6. Bothmer, R. Von, 1979: Revision of the Asiatic taxa ofHordeum sectionStenostachys. — Bot. Tidsskr.74: 117–147.Google Scholar
  7. , 1983: Interspecific hybridization with cultivated barley (Hordeum vulgare L.). — Hereditas99: 219–244.PubMedGoogle Scholar
  8. , 1989: Variation and differentiation inHordeum marinum (Poaceae). — Nordic J. Bot.9: 1–10.Google Scholar
  9. , 1984: Haploid barley from the intergeneric crossHordeum vulgare ×Psathyrostachys fragilis. — Euphytica33: 363–367.Google Scholar
  10. , 1993: Variation and taxonomy inHordeum depressum and in theH. brachyantherum complex (Poaceae). — Nordic J. Bot.13: 3–17.Google Scholar
  11. , 1987: Genome relationship betweenPsathyrostachys huashanica andP. fragilis (Poaceae). — Pl. Syst. Evol.156: 183–188.Google Scholar
  12. Dewey, D. R., 1967: Synthetic hybrids ofAgropyron scribneri ×Elymus junceus. — Bull. Torrey Bot. Club94: 388–395.Google Scholar
  13. , 1972: Genome analysis of hybrids between diploidElymus junceus and five tetraploidElymus species. — Bot. Gaz.133: 415–420.Google Scholar
  14. , 1975: The origin ofAgropyron smithii. — Amer. J. Bot.62: 524–530.Google Scholar
  15. , 1979: TheHordeum violaceum complex of Iran. — Amer. J. Bot.66: 166–172.Google Scholar
  16. , 1982: Genomic and phylogenetic relationships among North American perennialTriticeae. — InEstes, J. R., Tyrl, R. J., Brunken, J. N., (Eds): Grasses and grasslands. Systematics and ecology, pp. 51–88. — Norman: University of Oklahoma.Google Scholar
  17. - 1984: The genomic system of classification as a guide to intergeneric hybridization with the perennialTriticeae. — InGustafson, J. P., (Ed.): Gene manipulation in plant improvement, pp. 209–279. — Plenum.Google Scholar
  18. , 1983: A cytogenetic basis for transferring Russian wildrye fromElymus toPsathyrostachys. — Crop. Sci.23: 123–126.Google Scholar
  19. Endo, T. R., Gill, B. S., 1984: The heterochromatin distribution and genome evolution in diploid species ofElymus andAgropyron. — Canad. J. Genet. Cytol.26: 669–678.Google Scholar
  20. Holmgren, P. K., Keuken, W., Schofield, E. K., 1981: Index herbariorum I. 6th edn. — Regnum Veg.31.Google Scholar
  21. Hsiao, C., Wang, R. R.-C., Dewey, D. R., 1986: Karyotype analysis and genome relationships of 22 diploid species in the tribeTriticeae. — Canad. J. Genet. Cytol.28: 109–120.Google Scholar
  22. Jensen, K. B., Bickford, I. W., 1992: Cytology of intergeneric hybrids betweenPsathyrostachys andElymus withAgropyron (Poaceae: Triticeae). — Genome35: 676–680.Google Scholar
  23. Landström, T., Bothmer, R. Von, Dewey, D. R., 1984: Genomic relationships in theHordeum brevisubulatum complex. — Canad. J. Genet. Cytol.26: 569–577.Google Scholar
  24. Levan, A., Fredga, K., Sandberg, A. A., 1965: Nomenclature for centromeric position on chromosomes. — Hereditas52: 201–220.Google Scholar
  25. Linde-Laursen, I., 1975: Giemsa C-banding of the chromosomes of ‘Emir’ barley. — Hereditas81: 285–289.Google Scholar
  26. , 1984: Nucleolus organizer polymorphism in barley,Hordeum vulgare L. — Hereditas100: 33–43.Google Scholar
  27. -Baden, C., 1994: Giemsa C-banded karyotypes of two cytotypes ofPsathyrostachys lanuginosa (2x, 4x) (Poaceae). — Hereditas120 (in press).Google Scholar
  28. , 1984a: Identification of the somatic chromosomes ofPsathyrostachys fragilis (Poaceae). — Canad. J. Genet. Cytol.26: 430–435.Google Scholar
  29. , 1984b: Somatic cell cytology of the chromosome eliminating, intergeneric hybridHordeum vulgare ×Psathyrostachys fragilis. — Canad. J. Bot.26: 436–444.Google Scholar
  30. , 1986: Comparison of the karyotypes ofPsathyrostachys juncea andP. huashanica (Poaceae) studied by banding techniques. — Pl. Syst. Evol.151: 203–213.Google Scholar
  31. , 1980: Giemsa C-banding in Asiatic taxa ofHordeum sectionStenostachys with notes on chromosome morphology. — Hereditas93: 235–254.Google Scholar
  32. , 1986: Giemsa C-banded karyotypes ofHordeum taxa from North America. — Canad. J. Genet. Cytol.28: 42–62.Google Scholar
  33. , 1989: Giemsa C-banded karyotypes of South AmericanHordeum (Poaceae). I. 14 diploid taxa. — Hereditas110: 289–305.Google Scholar
  34. , 1990: Giemsa C-banded karyotypes of diploid and tetraploidHordeum bulbosum (Poaceae). — Pl. Syst. Evol.172: 141–150.Google Scholar
  35. , 1992: Physical localization of active and inactive rRNA gene loci inHordeum marinum subsp.gussoneanum (4x) by in situ hybridization. — Genome35: 1032–1036.Google Scholar
  36. , 1991: Genome and chromosome disposition at somatic metaphase in aHordeum ×Psathyrostachys hybrid. — Heredity66: 203–210.Google Scholar
  37. Löve, A., 1982: Generic evolution of the wheatgrasses. — Biol. Zentralbl.101: 199–212.Google Scholar
  38. , 1984: Conspectus of theTriticeae. — Feddes Repert.95: 425–521.Google Scholar
  39. Lu, B.-R., 1991: Intergeneric crosses ofPsathyrostachys huashanica withElymus spp. and cytogenetic studies of the hybrids withE. tsukushiensis (Poaceae, Triticeae). — Nordic J. Bot.11: 27–32.Google Scholar
  40. , 1989: Cytogenetic studies of the hybrid betweenPsathyrostachys juncea andP. huashanica (Poaceae). — Nordic J. Bot.9: 11–14.Google Scholar
  41. Plourde, A., Fedak, G., St-Piere, C. A., Comeau, A., 1990: A novel intergeneric hybrid in theTriticeae: Triticum aestivum ×Psathyrostachys juncea. — Theor. Appl. Genet.79: 45–48.Google Scholar
  42. Stebbins, G. L., 1985: Polyploidy, hybridization, and the invasion of new habitats. — Ann. Missouri Bot. Gard.72: 824–832.Google Scholar
  43. Wang, R. R.-C., 1984: Genetically controlled desynapsis in diploidCritesion violaceum and its hybrids with autotetraploidPsathyrostachys juncea. — Canad. J. Genet. Cytol.26: 532–537.Google Scholar
  44. , 1987: Synthetic and natural hybrids ofPsathyrostachys huashanica. — Genome29: 811–816.Google Scholar
  45. , 1990: Intergeneric hybrids betweenThinopyrum andPsathyrostachys (Triticeae). — Genome33: 845–849.Google Scholar
  46. , 1984: Morphology and cytology of interspecific hybrids ofLeymus mollis. — J. Heredity75: 488–492.Google Scholar
  47. William, M. D. H. M., Mujeeb-Kazi, A., 1992: Isozyme and cytological markers of somePsathyrostachys juncea accessions. — Theor. Appl. Genet.84: 528–534.Google Scholar
  48. Zhang, H.-B., Dvořák, J., 1991: The genome origin of tetraploid species ofLeymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences. — Amer. J. Bot.78: 871–884.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Ib Linde-Laursen
    • 1
  • Claus Baden
    • 2
  1. 1.Plant Biology Section, Environmental Science and Technology DepartmentRisø National LaboratoryRoskildeDenmark
  2. 2.Botanical SectionThe Royal Veterinary and Agricultural UniversityFrederiksberg C (Copenhagen)Denmark

Personalised recommendations