Skip to main content
Log in

Molecular phylogeny ofBrachycome (Asteraceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Intrageneric relationships in the genusBrachycome were investigated by the comparison of nucleotide sequences of the chloroplast genematK. Evolutionary trends of some morphological and cytological characters were estimated based on thematK tree. The results indicate thatBrachycome is divided into four major clades, and circumscription of superspecies based primarily on fruit morphology is not fully supported. Fruit morphology has evolved in parallel from simple to complex structures in several lineages. The ancestral basic chromosome number isx = 9, and lower chromosome numbers are the products of several dysploid reductions fromn = 9 in two of four major clades ofBrachycome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi J., Watanabe K., Fukui K., Ohmido N., Kosuge K. (1997) Chromosomal location and reorganization of the 45S and 5S rDNA in theBrachyscome lineariloba complex (Asteraceae). J. Plant Res. 110: 371–377.

    Google Scholar 

  • Bremer K. (1987) Tribal interrelationships of the Asteraceae. Cladistics 3: 210–253.

    Google Scholar 

  • Carter C. R. (1978) The cytology ofBrachycome. II. The subgenusMetabrachycome: a general survey. Austral. J. Bot. 26: 699–706.

    Google Scholar 

  • Davis G. L. (1948) Revision of the genusBrachycome Cass. Part I. Australian species. Proc. Linn. Soc. New South Wales 73: 142–241.

    Google Scholar 

  • Davis G. L. (1949) Revision of the genusBrachycome Cass. Part III. Description of three new Australian species and some new locality records. Proc. Linn. Soc. New South Wales 74: 97–106.

    Google Scholar 

  • Davis G. L. (1954) Supplementary notes on the genusBrachycome Cass. Descriptions of five new Australian species and some new locality records. Proc. Linn. Soc. New South Wales 79: 203–210.

    Google Scholar 

  • Davis G. L. (1959) Two new Australian species ofBrachycome Cass. (Compositae). Muelleria 1: 111–113.

    Google Scholar 

  • Denda T., Kosuge K., Watanabe K., Ito M., Suzuki Y., Short P. S., Yahara T. (1996) Intron length variation of the Adh gene inBrachyscome (Asteraceae). Plant Molec. Biol. 28: 1067–1073.

    Google Scholar 

  • Donoghue M. J., Olmstead R. G., Smith J. F., Palmer J. D. (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann. Missouri Bot. Gard. 79: 333–345.

    Google Scholar 

  • Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.

    Google Scholar 

  • Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein J. (1988) Phylogenies from molecular sequences: inference and reliability. Annual Rev. Genet. 22: 521–565.

    Google Scholar 

  • Johnson L. A., Soltis D. E. (1994)matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst. Bot. 19: 143–156.

    Google Scholar 

  • Johnson L. A. (1995) Phylogenetic inference in Saxifragaceae sense stricto andGilia (Polemoniaceae) usingmatK sequences. Ann. Missouri Bot. Gard. 82: 149–175.

    Google Scholar 

  • Maddison D. R. (1991) The discovery and importance of multiple islands of most-parsimonious trees. Syst. Zool. 40: 315–328.

    Google Scholar 

  • Maddison W. P., Maddison D. R. (1992) MacClade: Analysis of phylogeny and character evolution. Version 3.0. Sinauer, Sunderland, MA.

    Google Scholar 

  • Mayr E. (1942) Systematics and the origin of species. Columbia University Press, New York.

    Google Scholar 

  • McClintock B. (1984) The significance of responses of the genome to challenge. Science 226: 792–801.

    Google Scholar 

  • Nakazawa M., Wakabayashi M., Ono M., Murata J. (1997) Molecular phylogenetic analysis ofChrysosplenium (Saxifragaceae) in Japan. J. Plant Res. 110: 265–274.

    Google Scholar 

  • Ooi K., Endo Y., Yokohama J., Murakami N. (1995) Useful primer designs to amplify DNA fragments of the plastid genematK from angiosperm plants. J. Jap. Bot. 70: 328–331.

    Google Scholar 

  • Short P. S. (1986) Chromosome number reports in Australian Asteraceae. Taxon 35: 610.

    Google Scholar 

  • Smith-White S., Carter C. R., Stace H. M. (1970) The cytology ofBrachycome. I. The subgenusEubrachycome: a general survey. Austral. J. Bot. 18: 99–125.

    Google Scholar 

  • Soltis D. E., Kuzoff R. K., Conti E., Goenall R., Ferguson K. (1996)matK andrbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. Amer. J. Bot. 83: 371–382.

    Google Scholar 

  • Steel K. P., Vilgalys R. (1994) Phylogenetic analyses ofPolemoniaceae using nucleotide sequences of the plastid genematK. Syst. Bot. 19: 126–142.

    Google Scholar 

  • Swofford D. L., (1991) PAUP: Phylogenetic analysis using parsimony, version 3.1.1. Illinois National History Survey Champaign.

    Google Scholar 

  • Watanabe K., Short P. S. (1992) Chromosome number determinations inBrachyscome Cass. (Asteraceae: Astereae) with comments on species delimitation, relationships and cytogeography. Muelleria 7: 457–471.

    Google Scholar 

  • Watanabe K., Smith-White S. (1987) Phyletic and evolutionary relationships ofBrachyscome lineariloba (Compositae). Plant Syst. Evol. 157: 121–141.

    Google Scholar 

  • Watanabe K., Carter C. R., Smith-White S. (1975) The cytology ofBrachycome lineariloba. 5. Chromosome relationships and phylogeny of the race A cytodemes (n = 2). Chromosoma 52: 383–397.

    Google Scholar 

  • Watanabe K., Carter C. R., Smith-White S. (1976) The cytology ofBrachycome lineariloba. 6. A synchronous chromosome condensation and meiotic behavior inB. lineariloba A (n = 2) ×B. campylocarpa A (n = 4). Chromosoma 57: 319–331.

    Google Scholar 

  • Watanabe K., Carter C. R., Smith-White S. (1985) The cytology ofBrachycome lineariloba 9. Chromosomal heterogeneity in natural populations of cytodeme C (2n = 16). Canad. J. Genet. Cytol. 27: 410–420.

    Google Scholar 

  • Watanabe K., Short P. S., Kosuge K., Smith-White S. (1991) The cytology ofBrachyscome Cass. (Asteraceae: Astereae). 11. Hybridization betweenB. goniocarpa (n = 4) andB. dichromosomatica (n = 2). Austral. J. Bot. 39: 475–485.

    Google Scholar 

  • Watanabe K., Denda T., Suzuki Y., Kosuge K., Ito M., Short P. S., Yahara T. (1996a) Chromosomal and molecular evolution inBrachyscome (Astereae). In: Hind D. J. N., Beentje H. J. (eds.) Compositae: Systematics. Proc. Int. Compositae Conf. Kew, 1994, pp. 705–722. Royal Botanic Gardens, Kew, Richmond.

    Google Scholar 

  • Watanabe K., Short P. S., Denda T., Suzuki Y., Ito M., Yahara T., Kosuge K. (1996b) Chromosome number determinations in the Australian Astereae (Asteraceae). Muelleria 9: 197–228.

    Google Scholar 

  • Zhang X., Bremer K. (1993) A cladistic analysis of the tribe Astereae (Asteraceae) with notes on their evolution and subtribal classification. Plant Syst. Evol. 184: 259–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denda, T., Watanabe, K., Kosuge, K. et al. Molecular phylogeny ofBrachycome (Asteraceae). Pl Syst Evol 217, 299–311 (1999). https://doi.org/10.1007/BF00984372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984372

Key words

Navigation