Skip to main content
Log in

Karyotype constancy and genome size variation in BulgarianCrepis foetida s. l. (Asteraceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Ten populations ofCrepis foetida from Bulgaria belonging to the three subspeciesfoetida, rhoeadifolia, andcommutata were analyzed karyologically using haematoxylin staining, Giemsa C-banding, fluorochrome banding, Ag-NOR staining, Feulgen cytophotometry (scanning densitometry and video-based image analysis), and propidium iodide flow cytometry. The quantitatively-evaluated karyotype structure was similar among all populations, with minor variation in a few intercalary sites only and in the amount of NOR-associated heterochromatin (satellites). In contrast to the karyotypic constancy the genome size ofC. foetida subsp.commutata was about 10% lower than those of the other two subspecies, which had similar genome sizes. The genome size measurements using three different methods resulted in highly correlated data. The genome size difference adds some weight to previous taxonomic opinions treatingC. foetida subsp.commutata at species level, asC. commutata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babcock E. B. (1947a) The genusCrepis. 1: Taxonomy, phylogeny, distribution and evolution ofCrepis. Univ. Calif. Publ. Bot. 21: 1–197.

    Google Scholar 

  • Babcock E. B. (1947b) The genusCrepis. 2: Systematic treatment. Univ. Calif. Publ. Bot. 22: 199–1030.

    Google Scholar 

  • Babcock E. B., Cameron D. R. (1934) Chromosomes and phylogeny inCrepis, II: The relationships of one hundred eight species. Univ. Calif. Publ. Agric. Sci. 6: 287–324.

    Google Scholar 

  • Babcock E. B., Cave M. S. (1938) A study of intra- and interspecific relations ofCrepis foetida L. Z. Indukt. Abstammungs-Vererbungsl. 75: 124–160.

    Google Scholar 

  • Babcock E. B., Jenkins J. A. (1943) Chromosomes and phylogeny inCrepis, III: The relationships of one hundred and thirteen species. Univ. Calif. Publ. Agric. Sci. 18: 241–292.

    Google Scholar 

  • Babcock E. B., Navashin M. S. (1930) The genusCrepis. Bibliogr. Genet. 6: 1–90.

    Google Scholar 

  • Babcock E. B., Stebbins G. L., Jenkins J. A. (1942) Genetic evolutionary processes inCrepis. Amer. Naturalist 76: 337–363.

    Google Scholar 

  • Baden C. (1983) Chromosome numbers in some Greek angiosperms. Willdenowia 13: 325–336.

    Google Scholar 

  • Baranyi M., Greilhuber J. (1996) Flow cytometric and Feulgen densitometric analysis of genome size variation inPisum. Theor. Appl. Genet. 92: 297–307.

    Google Scholar 

  • Bartolo G., Brullo S., Pavone P. (1978) Numeri cromosomici per la flora Italiana: 484–493. Inform. Bot. Ital. 10: 64–80.

    Google Scholar 

  • Bennett M. D., Smith J. B. (1976) Nuclear DNA amounts in angiosperms. Philos. Trans. Ser. B 274: 227–274.

    Google Scholar 

  • Bloom S. E., Goodpasture C. (1976) An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Human Genet. 34: 199–206.

    Google Scholar 

  • Bremer K. (1994)Asteraceae — cladistics and classification. Timber Press, Portland, OR.

    Google Scholar 

  • D'Ovidio R. (1986) Numeri cromosomici per la flora Italiana: 1082–1093. Inform. Bot. Ital. 18: 168–175.

    Google Scholar 

  • Greilhuber J. (1977) Nuclear DNA and heterochromatin contents in theScilla hohenackeri group,S. persica, andPuschkinia scilloides (Liliaceae). Plant Syst. Evol. 128: 243–257.

    Google Scholar 

  • Greilhuber J. (1988) ‘Self-tanning’ — a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst. Evol. 158: 87–96.

    Google Scholar 

  • Greilhuber J., Ebert I. (1994) Genome size variation inPisum sativum. Genome 37: 646–655.

    Google Scholar 

  • Greilhuber J., Ehrendorfer F. (1988) Karyological approaches to plant taxonomy. I.S.I. Atlas Sci., Animal Plant Sci. 1: 289–297.

    Google Scholar 

  • Greilhuber J., Obermayer R. (1997) Genome size and maturity group inGlycine max (soybean). Heredity 78: 547–551.

    Google Scholar 

  • Greuter W. (1975) First OPTIMA Meeting in Crete — September 1975. Guide to the excursions. Geneve.

    Google Scholar 

  • Ikeda H. (1988) Karyomorphological studies on the genusCrepis with special reference to C-banding pattern. J. Sci. Hiroshima Univ., Ser. B., Div. 2, Bot. 22: 65–117.

    Google Scholar 

  • Kamari G. (1976) Cytotaxonomic study of theCrepis neglecta complex in Greece. Ph.D. Thesis, University of Patras.

  • Kamari G. (1992) Karyosystematic studies on threeCrepis species (Asteraceae) endemic to Greece. Plant Syst. Evol. 182: 1–19.

    Google Scholar 

  • Kamari G., Anagnostopoulos A. (1991) Mediterranean chromosome number reports 1 (1–6). Fl. Medit. 1: 224–229.

    Google Scholar 

  • Kiehn M., Vitek E., Hellmayr E., Walter J., Tschenett J., Justin C., Mann M. (1991) Beiträge zur Flora von Österreich: Chromosomenzählungen. Verh. Zool.-Bot. Ges. Österreich 128: 19–39.

    Google Scholar 

  • Kodama Y., Yoshida M. C., Sasaki M. (1980) An improved silver staining technique for nucleolus organizer regions by using nylon cloth. Jap. J. Human Genet. 25: 229–233.

    Google Scholar 

  • König C., Ebert I. (1997) Computer-aided quantitative analysis of banded karyotypes, exemplified in C-bandedHyacinthoides italica s.l. (Hyacinthaceae). Caryologia 50: 105–116.

    Google Scholar 

  • Kuzmanov B. (1975) Karyological study of BulgarianCompositae. III. In: Velchev V., Kuzmanov B., Palamarev E. (eds.) In honour of Acad. Daki Jordanov. Bulgarian Academy of Sciences, Sofia, pp. 49–60.

    Google Scholar 

  • Kuzmanov B., Kozhuharov S. (1970) IOPB chromosome number reports XXVI. Taxon 19: 265.

    Google Scholar 

  • Kuzmanov B., Nikolova V. (1977) IOPB chromosome number reports LVIII. Taxon 26: 559.

    Google Scholar 

  • Kuzmanov B., Nikolova V. (1980) IOPB chromosome number reports LXIX. Taxon 29: 715.

    Google Scholar 

  • Levan A., Fredga K., Sandberg A. A. (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.

    Google Scholar 

  • Loon J. C. van, Kieft B. (1980) IOPB chromosome number reports LXVIII. Taxon 29: 538–542.

    Google Scholar 

  • Loon J. C. van, Setten A. K. van (1982) IOPB chromosome number reports LXXVI. Taxon 31: 589–592.

    Google Scholar 

  • Luque T., Diaz Lifante Z. (1991) Chromosome number of plants collected during Iter Mediterraneum I in the SE of Spain. Bocconea 1: 303–364.

    Google Scholar 

  • Melander Y., Wingstrand K. G. (1953) Gomori's haematoxylin as a chromosome stain. Stain Technol. 28: 217.

    PubMed  Google Scholar 

  • Montmollin B. de (1986) Etude cytotaxonomique de la flore de la Crete. III. Nombres chromosomiques. Candollea 41: 431–439.

    Google Scholar 

  • Nazarova E. A. (1984) Chromosome numbers in the Caucasian representatives of the familyAsteraceae, Brassicaceae, Fabaceae, Limoniaceae. Bot. Zhurn. (Moscow and Leningrad) 69: 972–975.

    Google Scholar 

  • Queiros M. (1973) Contribuicao para o conhecimento citotaxonomico dasSpermatophyta de Portugal. II.Compositae, Suppl. I. Bol. Soc. Brot. 47: 299–314.

    Google Scholar 

  • Rohlf F. J. (1992) BIOM. A package of statistical programs to accompany the next ‘Biometry’. Applied Biostatistics, New York.

    Google Scholar 

  • Rosenberg O. (1918) Chromosomenzahlen und Chromo-somendimensionen in der GattungCrepis. Arkiv Bot. 15: 1–16.

    Google Scholar 

  • Rostovtseva T. S. (1983) Chromosome numbers of some species of the familyAsteraceae II. Bot. Zhurn. (Moscow and Leningrad) 68: 660–664.

    Google Scholar 

  • Schwarzacher T., Ambros P., Schweizer D. (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst. Evol. 134: 293–297.

    Google Scholar 

  • Schweizer D. (1973) Differential staining of plant chromosomes with Giemsa. Chromosoma 40: 307–320.

    Google Scholar 

  • Schweizer D. (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58: 307–324.

    PubMed  Google Scholar 

  • Sell P. D. (1976)Crepis L. In: Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., Webb D. A. (eds.) Flora Europaea, 4. Cambridge University Press, Cambridge, pp. 344–357.

    Google Scholar 

  • Siljak-Yakovlev S. (1980) IOPB chromosome number reports LXVII. Taxon 29: 347.

    Google Scholar 

  • Siljak-Yakovlev S. (1981) IOPB chromosome number reports LXXIII. Taxon 30: 843–844.

    Google Scholar 

  • Siljak-Yakovlev S. (1982) IOPB chromosome number reports LXXVII. Taxon 31: 768.

    Google Scholar 

  • Siljak-Yakovlev S., Cartier D. (1979) Utilisation de la coloration differentielle au Giemsa dans l'analyse des caryotypes de quatreCrepis. Rev. Cytol. Biol. Vég. Botaniste 2: 13–20.

    Google Scholar 

  • Siljak-Yakovlev S., Cartier D. (1982) Comparative analysis of C-banding karyotypes inCrepis praemorsa subsp.praemorsa and subsp.dinarica. Plant Syst. Evol. 141: 85–90.

    Google Scholar 

  • Siljak-Yakovlev S., Cartier D. (1986) Heterochromatin patterns in some taxa ofCrepis praemorsa complex. Caryologia 39: 27–32.

    Google Scholar 

  • Strid A. (1971) Chromosome numbers of some Albanian angiosperms. Bot. Not. 124: 490–496.

    Google Scholar 

  • Strid A. (1980) IOPB chromosome number reports LXIX. Taxon 29: 709–710.

    Google Scholar 

  • Strid A., Franzen R. (1981) IOPB chromosome number reports LXVIII. Taxon 30: 829–842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Prof. Dr. Stefan Kozhuharov (4 January 1933–24 August 1997).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrova, D., Ebert, I., Greilhuber, J. et al. Karyotype constancy and genome size variation in BulgarianCrepis foetida s. l. (Asteraceae). Pl Syst Evol 217, 245–257 (1999). https://doi.org/10.1007/BF00984369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984369

Key words

Navigation