Skip to main content
Log in

C-band distribution, DNA content and base composition inAdoxa moschatellina (Adoxaceae), a plant with cold-sensitive chromosome segments

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The chromosomes ofAdoxa moschatellina (2n = 36, paleo-4x) contain mostly terminal, occasionally intercalary, negatively heteropycnotic cold-induced regions which correspond to all major C-bands including the satellites, as revealed by sequential analysis. Positively C-stained are also centromeres, the dotlike arms of the 7 telocentric chromosome pairs, and some very narrow intercalary bands; their cold-sensitivity is hardly traceable. There exists a fraction of condensed interphase chromatin, at least after chilling, which is virtually not C-banded (possibly condensed euchromatin).

The DNA amount is 14.3 pg (1 C). The heterochromatin content is 13.0%. The thermal melting profile (Tm corresponding to 38.6% GC) does not reveal a particular AT- or GC-rich fraction. Significantly, the heterochromatin respond to the Hy-banding procedure is neutral.

The distribution of cold-sensitive regions in plants was analysed with the “arm-frame method”: Intercalary positions, clearly, are not especially favoured regions. The obvious deficiency at centromeric positions may depend on the action of natural selection against mechanically labile centromeric regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, P. W., 1977: Determinants of nuclear chromatin structure in angiosperms. — Ann. Sci. Nat., Bot. biol. vég., 12e sér.,18, 193–206.

    Google Scholar 

  • Baumann, T. W., 1971: Heterochromatin und DNS-Replikation beiScilla sibirica. — Exp. Cell Res.64, 323–330.

    Google Scholar 

  • Bennett, M. D., Smith, J. B., 1976: Nuclear DNA amounts in angiosperms. — Phil. Trans. Roy. Soc. London,B, 274, 227–274.

    Google Scholar 

  • Boothroyd, E. R., Lima-de-Faria, A., 1964: DNA synthesis and differential reactivity in the chromosomes ofTrillium at low temperature. — Hereditas52, 122–126.

    Google Scholar 

  • Darlington, C. D., La Cour, L. F., 1938: Differential reactivity of the chromosomes. — Ann. Bot.2, 615–625.

    Google Scholar 

  • , 1940: Nucleic acid starvation of chromosomes inTrillium. — J. Genet.40, 185–212.

    Google Scholar 

  • Delay, C., 1946/48: Recherches sur la structure des noyaux quiescents chez les phanérogames. — Rev. Cyt. Cytophysiol. Vég.9, 169–223,10, 103–229.

    Google Scholar 

  • Dyer, A. F., 1963: Allocyclic segments of chromosomes and the structural heterozygosity that they reveal. — Chromosoma (Berl.)13, 545–576.

    Google Scholar 

  • Fedorov, A. A. (Ed.), 1969: Chromosome numbers of flowering plants. — Leningrad: Akademija Nauka SSSR.

    Google Scholar 

  • Geitler, L., 1940: Temperaturbedingte Ausbildung von Spezialsegmenten an Chromosomenenden. — Chromosoma1, 554–561.

    Google Scholar 

  • Greilhuber, J., 1974: Hy-banding: A new quick technique for heterochromatin staining in plant chromosomes. — Naturwiss.61, 170–171.

    Google Scholar 

  • , 1975: Heterogeneity of heterochromatin in plants: Comparison of Hyand C-bands inVicia faba. — Pl. Syst. Evol.124, 139–156.

    Google Scholar 

  • , 1976: C-banded karyotypes in theScilla hohenackeri group,S. persica, andPuschkinia (Liliaceae). — Pl. Syst. Evol.126, 149–188.

    Google Scholar 

  • , 1978: Quantitative analyses of C-band karyotypes, and systematics in the cultivated species of theScilla siberica group (Liliaceae). — Pl. Syst. Evol.129, 63–109 (1978).

    Google Scholar 

  • Hara, H., 1956: Contributions to the study of vegetations in the Japanese plants closely related to those of Europe or North America. Part 2. — J. Fac. Sci. Univ. Tokyo, sect. III, Bot.,6, 343–391.

    Google Scholar 

  • La Cour, L. F., 1951: Heterochromatin and the organisation of nucleoli in plants. — Heredity5, 37–50.

    Google Scholar 

  • , 1974: Fine structure and staining behaviour of heterochromatic segments in two plants. — J. Cell Sci.14, 1–17.

    Google Scholar 

  • Levan, A., 1942: Studies on the meiotic mechanism of haploid rye. — Hereditas28, 177–211.

    Google Scholar 

  • Lima-de-Faria, A., 1976: The chromosome field. III. The regularity of distribution of cold-induced regions. — Hereditas83, 139–152.

    Google Scholar 

  • Mandel, M., Marmur, J., 1968: Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods of Enzymology12 B, 195–206.

    Google Scholar 

  • Marks, G. E., 1975: The Giemsa-staining centromeres ofNigella damascena. — J. Cell Sci.18, 19–25.

    Google Scholar 

  • Marmur, J., 1961: A procedure for the isolation of DNA from microorganisms. — J. Molec. Biol.3, 208–218.

    Google Scholar 

  • Mechelke, F., 1955: Temperaturbedingte Chromosomensegmentierung bei Sommer- und Wintergersten. — Kulturpflanze3, 127–135.

    Google Scholar 

  • Noguchi, J., Kawano, S., 1974: Brief notes on the chromosomes of some Japanese plants. — J. Jap. Bot.49, 76–86.

    Google Scholar 

  • Pätau, K., 1952: Absorption microspectrophotometry in irregularly shaped objects. — Chromosoma5, 341–362.

    Google Scholar 

  • Schweizer, D., 1973a: Vergleichende Untersuchungen zur Längsdifferenzierung der Chromosomen vonVicia faba L. — Verhandl. Naturf. Ges. Basel83, 1–75.

    Google Scholar 

  • , 1973b: Differential staining of plant chromosomes with Giemsa. — Chromosoma (Berl.)40, 307–320.

    Google Scholar 

  • , 1976: Giemsa banded karyotypes, systematics, and evolution inAnacyclus (Asteraceae-Anthemideae). — Pl. Syst. Evol.126, 107–148.

    Google Scholar 

  • Tschermak-Woess, E., 1963: Strukturtypen der Ruhekerne von Pflanzen und Tieren. ProtoplasmatologiaV/1. — Wien: Springer.

    Google Scholar 

  • Utsumi, S., Takehisa, S., 1974: Heterochromatin differentiation inTrillium kamtschaticum by ammoniacal silver reaction. — Exp. Cell Res.86, 398–401.

    Google Scholar 

  • van't Hof, J., Sparrow, A. H., 1963: A relationship between DNA content, nuclear volume, and minimum mitotic cycle time. — Proc. Nat. Acad. Sci. U.S.A.49, 897–902.

    Google Scholar 

  • Vosa, C. G., 1976: Chromosome banding patterns in cultivated and wild barleys (Hordeum spp.). — Heredity37, 395–403.

    Google Scholar 

  • Wilson, G. B., Boothroyd, E. R., 1944: Temperature-induced differential contraction in the somatic chromosomes ofTrillium erectum L. — Can. J. Res.22, 105–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Univ.-Prof. Dr.Lothar Geitler on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greilhuber, J. C-band distribution, DNA content and base composition inAdoxa moschatellina (Adoxaceae), a plant with cold-sensitive chromosome segments. Pl Syst Evol 131, 243–259 (1979). https://doi.org/10.1007/BF00984257

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984257

Key words

Navigation