Skip to main content
Log in

Inferred chromosome morphology of the ancestral genome ofTriticum

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The lengths of the A, B, and D genomes of common wheat,Triticum aestivum, were measured from the karyotype. Relative to the B genome, standardized as length 1.000, the lengths of the A and D genomes were 0.835 and 0.722, respectively. The lengths of the chromosome arms in the A and D genomes were then multiplied by the appropriate constants so that the total lengths of each genome also equalled 1.000. These calculations revealed that homoeologous chromosomes in wheat, with a few exceptions, have similar sizes and arm ratios. The arm lengths of the three homoeologues in each homoeologous group were then averaged. These average chromosomes turned out to be remarkably similar, in size and arm ratio, to their homoeologues in the E genome ofElytrigia elongata. This evidence and data on cross-compatibility and morphological characteristics suggested that the genusTriticum is a result of adaptive radiation from the perennial genusElytrigia, specifically from the complex of species possessing the E genome or one closely related to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, L. C., Kimber, G., 1980: A hybrid between diploidAgropyron junceum andTriticum aestivum. — Cer. Res. Commun.8, 355–358.

    Google Scholar 

  • Cauderon, Y., 1958: Étude cytogénétique desAgropyrum français et hybrides avec les blés. — Ann. Amélior. Plant.8, 389–567.

    Google Scholar 

  • Chapman, V., Miller, T. E., Riley, R., 1976: Equivalence of the A genome of bread wheat and that ofTriticum urartu. — Genet. Res., Camb.27, 69–76.

    Google Scholar 

  • —, 1966: The allocation of the chromosomes ofTriticum aestivum to the A and B genomes and evidence on genome structure. — Can. J. Gen. Cytol.8, 57–63.

    Google Scholar 

  • Chennaveeraiah, M. S., 1960: Karyomorphologic and cytotaxonomic studies inAegilops. — Acta Horti Gotob.23, 85–178.

    Google Scholar 

  • Dewey, D. R., 1969: Synthetic hybrids ofAgropyron caespitosum ×Agropyron spicatum, Agropyron canium, andAgropyron yezoense. — Bot. Gaz.130, 110–116.

    Google Scholar 

  • —, 1974: Hybrids and induced amphiploids ofElymus canadensis ×Agropyron libanoticum. — Amer. J. Bot.61, 181–187.

    Google Scholar 

  • —, 1975: Genome relations of diploidAgropyron libanoticum with diploid and autotetraploidAgropyron stipifolium. — Bot. Gaz.136, 116–121.

    Google Scholar 

  • —, 1981: Cytogenetics ofAgropyron ferganense and its hybrids with six species ofAgropyron, Elymus, andSitanion. — Amer. J. Bot.68, 216–255.

    Google Scholar 

  • —, 1982: Genomic and phylogenetic relationships among North American perennialTriticeae. — InEstes, J. E., Tyrl, R. J., Brunken, J. N., (Eds.): Grasses and Grasslands Systematics and Ecology, 50–88. — Univ. Okla. Press, Norman, Okla.

    Google Scholar 

  • Dvořák, J., 1971: Hybrids between a diploidAgropyron elongatum andAegilops squarrosa. — Can. J. Genet. Cytol.13, 90–94.

    Google Scholar 

  • —, 1976: The relationship betweenTriticum urartu and the A and B genomes ofTriticum aestivum. — Can. J. Genet. Cytol.18, 371–377.

    Google Scholar 

  • —, 1979: Metaphase I pairing frequencies of individualAgropyron elongatum chromosome arms withTriticum chromosomes. — Can. J. Genet. Cytol.21, 243–254.

    Google Scholar 

  • —, 1980: Homoeology betweenAgropyron elongatum chromosomes andTriticum aestivum chromosomes. — Can. J. Genet. Cytol.22, 237–259.

    Google Scholar 

  • —, 1981a: Chromosome differentiation in polyploid species ofElytrigia, with special reference to the evolution of diploid-like chromosome pairing in polyploid species. — Can. J. Genet. Cytol.23, 287–303.

    Google Scholar 

  • —, 1981b: Genome relationships amongElytrigia (=Agropyron)elongata, E. stipifolia, “E. elongata 4 x”,E. caespitosa, E. intermedia, and “E. elongata 10 x”. — Can J. Genet. Cytol.23, 481–492.

    Google Scholar 

  • —, 1983: The origin of wheat chromosomes 4A and 4B and their genome reallocation. — Can. J. Genet. Cytol.25, 210–214.

    Google Scholar 

  • —, 1982: Chromosomal and nucleotide sequence differentiation in genomes of polyploidTriticum species. — Theor. Appl. Genet.63, 349–360.

    Google Scholar 

  • —, 1974: Disomic and ditelosomic additions of diploidAgropyron elongatum chromosomes toTriticum aestivum. — Can. J. Genet. Cytol.16, 399–417.

    Google Scholar 

  • —, —, 1977: Homoeologous chromatin exchange in a radiation-induced gene transfer. — Can. J. Genet. Cytol.19, 123–131.

    Google Scholar 

  • Evans, L. E., 1962: Karyotype analysis and chromosome designations for diploidAgropyron elongatum (Host) P. B. — Can. J. Genet. Cytol.4, 267–271.

    Google Scholar 

  • Flavell, R. B., O'Dell, M., 1976: Ribosomal RNA genes on homologous chromosomes of groups 5 and 6 in hexaploid wheat. — Heredity37, 377–385.

    Google Scholar 

  • —, —, 1979: The genetic control of nucleolus formation in wheat. — Chromosoma71, 135–152.

    Google Scholar 

  • Gaul, H., 1953: Genomanalytische Untersuchungen beiTriticum ×Agropyron intermedium unter Berücksichtigung vonSecale cereale ×A. intermedium. — Z. Indukt. Abstamm. Vererb.85, 505–546.

    Google Scholar 

  • Gerlach, W., Appels, R., Dennis, E. S., Peacock, W. J., 1979: Evolution and analysis of wheat genomes using highly repeated DNA sequences, 81–91. — Proc. 5th Int. Wheat Genet. Symp., New Delhi.

  • Hart, G. E., Langston, P. J., 1977: Chromosomal location and evolution of isozyme structural genes in hexaploid wheat. — Heredity39, 263–277.

    Google Scholar 

  • —, 1983: Chromosomal locations of elevenElytrigia elongata (=Agropyron elongatum) isozyme structural genes. — Genet. Res., Camb.,41, 181–202.

    Google Scholar 

  • Heneen, W. K., Runemark, H., 1972: Chromosomal polymorphism in isolated populations ofElymus (Agropyron) in the Aegean. I.Elymus striatulus sp. nov. — Bot. Not.125, 419–429.

    Google Scholar 

  • Iordansky, A. B., Zurabishvili, T. B., Badaev, N. S., 1978: Linear differentiation of cereal chromosomes. I. Common wheat and its supposed ancestors. — Theor. Appl. Genet.51, 145–152.

    Google Scholar 

  • Jenkins, B. C., Mochizuki, A., 1957: A new amphiploid from a cross betweenTriticum durum andAgropyron elongatum (2n = 14). — Wheat Inf. Serv.5, 15.

    Google Scholar 

  • Larsen, J., 1973: The role of chromosomal interchanges in the evolution of hexaploid wheat,Triticum aestivum. — Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 87–93.

  • Matsumura, S., Muramatsu, M., Sakamoto, 1958: Genome analysis inAgropyron, a genus related toTriticum. — Proc. 10th Int. Cong. Genet., Montreal2, 181–182.

    Google Scholar 

  • Östergren, G. A., 1940: A hybrid betweenTriticum turgidum andAgropyron junceum. — Hereditas26, 395–398.

    Google Scholar 

  • Peto, F. H., 1936: Hybridization ofTriticum andAgropyron. II. Cytology of the male parents and F1 generation. — Can. J. Res., Ser. C14, 203–214.

    Google Scholar 

  • Pienaar, R., de V., 1979: Meiotic association in aTriticum aestivum L. em.Thell ×Agropyron distichum (Thunb.)Beauv. hybrid. — Wheat Inf. Serv.49, 24–26.

    Google Scholar 

  • Sakamoto, S., 1973: Patterns of phylogenetic differentiation in the tribeTriticeae. — Seiken Zihô24, 11–31.

    Google Scholar 

  • Sapehin, A. A., 1935: Cytological investigation ofTriticum ×Agropyron hybrids. — Bot. Žurn.20, 119–125.

    Google Scholar 

  • Sears, E. R., 1954: The aneuploids of common wheat. — Mo. Agric. Exp. Sta. Res. Bull.572, 1–59.

    Google Scholar 

  • —, 1966: Nullisomic-tetrasomic combinations in hexaploid wheat. — In:Riley, R., Lewis, K. R., (Eds.): Chromosome Manipulations and Plant Genetics, 29–45. — Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Sears, L. M. S., 1979: The telocentric chromosomes of common wheat. p. 389–407. — Proc. 5th Int. Wheat Genet. Symp., New Delhi.

  • Senjaninova-Korczagina, M., 1932: Karyo-systematical investigation of the genusAegilops L. — Bull. Appl. Bot., Genet., Plant Breed. ser.II, 1, 1–90.

    Google Scholar 

  • Stebbins, G. L., 1958: Longevity, habitat, and release of genetic variability in the higher plants. — Cold Spring Harbor Symp. Quant. Biol.2, 365–378.

    Google Scholar 

  • —, 1953: Artificial and natural hybrids in theGramineae, tribeHordeeae. V. Diploid hybrids ofAgropyron. — Amer. J. Bot.40, 444–449.

    Google Scholar 

  • Wakar, B. A., 1935: Cytologische Untersuchung der ersten Generation der Weizen-Queckengrasbastarde. — Züchter7, 199–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvořák, J., McGuire, P.E. & Mendlinger, S. Inferred chromosome morphology of the ancestral genome ofTriticum . Pl Syst Evol 144, 209–220 (1984). https://doi.org/10.1007/BF00984134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984134

Key words

Navigation