Skip to main content
Log in

Thread-forming structures in angiosperm anthers: Their diverse role in pollination ecology

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

This paper reviews the origin, nature, systematic distribution, and the respective function of the highly variable and diverse thread-forming structures in angiosperm anthers (including somewhat similar, rare features in ferns and gymnosperms). On one hand, such threads may function as pollen-connecting vectors in forming pollen dispersal units, as sporopollenin threads (viscin threads), e.g. in Onagraceae, or sporopollenin-less threads in surprisingly many other angiosperm families. On the other hand, as is known from theImpatiens — “pollen basket”, threads or ropes may be involved in pollen presentation. In addition, for the first time two new examples of “pollen baskets” in Boraginaceae and Scrophulariaceae are reported. InEchium the basket is formed by cellular elements from the modified septal regions, whereas inEsterhazya a similar effect is achieved in an analogous manner by trichomes of the epidermal layer of the thecal wall. There is obviously a different function of these seemingly very similar baskets: inEchium the feature acts preferably as a pollen presentation agent, whereas inEsterhazya the primary function is to prevent all the pollen from being dispersed too soon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman J. D., Williams N. H. (1981) Pollen morphology of theChloraeinae (Orchidaceae: Diuridae) and related subtribes. Amer. J. Bot. 68: 1392–1402.

    Google Scholar 

  • Beck v. Mannagetta G. (1895) Orobanchaceae. In: Engler A., Prantl K. (eds.) Die Natürlichen Pflanzenfamilien IV, 3b. Engelmann, Leipzig.

    Google Scholar 

  • Burns-Balogh P., Funk V. A. (1986) A phylogenetic analysis of the Orchidaceae. Smithsonian Contr. Bot. 61: 1–79.

    Google Scholar 

  • Burns-Balogh P., Hesse M. (1988) Pollen morphology of the cypripedioid orchids. Plant Syst. Evol. 158: 165–182.

    Google Scholar 

  • Buzato S., Franco A. L. M. (1992)Tetrastylis ovalis: a second case of bat-pollinated passionflower (Passifloraceae). Plant Syst. Evol. 181: 261–267.

    Google Scholar 

  • Canne-Hilliker J. M. (1987) Patterns of floral development inAgalinis and allies (Scrophulariaceae) II. Floral development ofAgalinis densiflora. Amer. J. Bot. 74: 1419–1430.

    Google Scholar 

  • Cox P. A., Knox R. B. (1989) Two-dimensional pollination in hydrophilous plants: convergent evolution in the generaHalodule (Cymodoceaceae),Halophila (Hydrocharitaceae),Ruppia (Ruppiaceae), andLepilaena (Zannichelliaceae). Amer. J. Bot. 76: 164–175.

    Google Scholar 

  • Cox P. A., Tomlinson P. B. (1988) Pollination ecology of a seagrass,Thalassia testudinum (Hydrocharitaceae), in St. Croix. Amer. J. Bot. 75: 958–965.

    Google Scholar 

  • Crepet W. L. (1996) Timing in the evolution of derived floral characters: Upper Cretaceous (Turonian) taxa with tricolpate and tricolpatederived pollen. Rev. Palaeobot. Palynol. 90: 339–359.

    Google Scholar 

  • Dannenbaum C., Schill R. (1991) Die Entwicklung der Pollentetraden und Pollinien bei den Asclepiadaceae. Bibliotheca Botanica 141: 138

    Google Scholar 

  • Dressler R. L. (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge.

    Google Scholar 

  • Endress P., Hufford L. S. (1989) The diversity of stamen structures and dehiscence patterns among Magnoliidae. Bot. J. Linnean Soc. 100: 45–85.

    Google Scholar 

  • Endress P., Stumpf S. (1991) The diversity of stamen structures in Lower Rosidae (Rosales, Fabales, Proteales, Sapindales). Bot. J. Linnean Soc. 107: 217–293.

    Google Scholar 

  • Halbritter H. (1998) Preparing living pollen material for Scanning Electron Microscopy using 2,2-Dimethoxypropane (DMP) and Critical-Point Drying. Biotech. Histochem. 73: 137–143.

    Google Scholar 

  • Halbritter H., Hesse M., Buchner R. (1997) Pollenconnecting threads inGymnocalycium (Cactaceae): their origin, function, and systematic relevance. Grana 36: 1–10.

    Google Scholar 

  • Hartl D. (1972) Scrophulariaceen II. In: Hegi, Illustrierte Flora von Mitteleuropa VI. Carl Hanser Verlag, Stuttgart.

    Google Scholar 

  • Hesse M. (1986) Nature, form and function of pollen-connecting threads in angiosperms. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto, pp. 109–118.

    Google Scholar 

  • Hesse M., Burns-Balogh P. (1984) Pollen and pollinarium morphology ofHabenaria (Orchidaceae). Pollen Spores 26: 385–400.

    Google Scholar 

  • Keri C., Zetter R. (1992) Notes on the exine ultrastructure of Onagraceae and Rhododendroideae (Ericaceae). Grana 31: 119–123.

    Google Scholar 

  • King M. J., Buchmann S. L. (1995) Bumble bee-initiated vibration release mechanism ofRhododendron pollen. Amer. J. Bot. 82: 1407–1411.

    Google Scholar 

  • Knox R. B., McConchie C. A. (1986) Structure and function of compound pollen. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto, pp. 265–282.

    Google Scholar 

  • Knuth P. (1899) Handbuch der Blütenbiologie II, 2. Engelmann, Leipzig.

    Google Scholar 

  • Kraemer M., Schmitt U. (1997) Nectar production patterns and pollination of the Canarian endemicEchium wildpretii Pearson ex Hook fil. Flora 192: 217–221.

    Google Scholar 

  • Kronestedt-Robards E. (1996) Formation of the pollen-aggregating threads inStrelitzia reginae. Ann. Bot. 77: 243–250.

    Google Scholar 

  • Kurmann M. H., Zavada M. S. (1994) Pollen morphological diversity in extant and fossil gymnosperms. In: Kurmann M. H., Doyle J. A. (eds.) Ultrastructure of Fossil Spores and Pollen. The Royal Botanic Gardens, Kew, pp. 123–137.

    Google Scholar 

  • Mayo S. J., Bogner J., Boyce P. C. (1997) The genera of Araceae. The Royal Botanic Gardens, Kew.

    Google Scholar 

  • Morawetz W., Waha M. (1991) Zur Entstehung und Funktion pollenverbindender Fäden beiPorcelia (Annonaceae). Beitr. Biol. Pflanzen 66: 145–154.

    Google Scholar 

  • Nixon K. E., Crepet W. L. (1993) Late Cretaceous fossil flowers of ericalean affinity. Amer. J. Bot. 80: 616–623.

    Google Scholar 

  • Pacini E., Franchi G. G. (1996) Some cytological, ecological and evolutionary aspects of pollination. Acta Soc. Bot. Pol. 65: 11–16.

    Google Scholar 

  • Pacini E., Franchi G. G. (1998) Pollen dispersal units, gynoecium and pollination. In: Owens S. J., Rudall P. J. (eds.) Reproductive Biology. The Royal Botanic Gardens, Kew, pp. 183–195.

    Google Scholar 

  • Pacini E., Franchi G. G. (1999) Types of pollen dispersal units and pollen competition. In: Clément C., Pacini E., Audran J.-C. (eds.) Anther and Pollen. From Biology to Biotechnology. Springer, Berlin Heidelberg New York, pp. 1–11.

    Google Scholar 

  • Patel V., Skvarla J. J., Ferguson I. K., Graham A., Raven P. H. (1985) The nature of threadlike structures and other morphological characters inJacqueshuberia pollen (Leguminosae: Caesalpinioideae). Amer. J. Bot. 72: 407–413.

    Google Scholar 

  • Pettitt J. M. (1981) Reproduction in seagrasses: pollen development inThalassia hemprichii, Halophila stipulacea andThalassodendron ciliatum. Ann. Bot. 48: 609–622.

    Google Scholar 

  • Pinheiro M. C., Teixeira Ormond W., Alves de Lima H., Rodrigues Correia M. C. (1995) Biologia da reproducao deNorantea brasiliensis Choisy (Marcgraviaceae). Rev. Brasileira Biol. 55 [Suppl. 1]: 79–88.

    Google Scholar 

  • Richter S. (1929) Über den Öffnungsmechanismus der Antheren bei einigen Vertretern der Angiospermen. Planta 8: 154–184.

    Google Scholar 

  • Rose M.-J., Barthlott W. (1995) Pollen-connecting threads inHeliconia (Heliconiaceae). Plant Syst. Evol. 195: 61–65.

    Google Scholar 

  • Rowley J. R. (1987) Plasmodesmata-like processes of tapetal cells. La Cellule 74: 229–241.

    Google Scholar 

  • Sazima I., Buzato S., Sazima M. (1993) The bizarre inflorescence ofNorantea brasiliensis (Marcgraviaceae): visits of hovering and perching birds. Bot. Acta 106: 507–513.

    Google Scholar 

  • Schill R., Wolter M. (1986) On the presence of elastoviscin in all subfamilies of the Orchidaceae and the homology to pollenkitt. Nordic J. Bot. 6: 321–324.

    Google Scholar 

  • Shukla A. K. (1984) A clarification on the use of the term viscin thread in Orchidaceae. Grana 23: 127.

    Google Scholar 

  • Skvarla J. J., Raven P. H., Chissoe W. F., Sharp M. (1978) An ultrastructural study of viscin threads in Onagraceae. Pollen Spores 20: 5–144.

    Google Scholar 

  • Skvarla J. J., Raven P. H., Praglowski J. (1975) The evolution of pollen tetrads in Onagraceae. Amer. J. Bot. 62: 6–35.

    Google Scholar 

  • Trevisan L. (1971)Dicheiropollis, a pollen type from Lower Cretaceous sediments of southern Tuscany (Italy). Pollen Spores 13: 561–596.

    Google Scholar 

  • Troll W. (1928) ÜberSpathicarpa sagittifolia Schott. Flora 123: 286–316.

    Google Scholar 

  • Tryon A. F. (1986) Stasis, diversity and function in spores based on an electron microscope survey of the Pteridophyta. In: Blackmore S., Ferguson I. K. (eds.) Pollen and spores. Form and Function. Linnean Soc. Symp. Series 12: 234–249.

    Google Scholar 

  • Vijayaraghavan M. R., Shukla A. K. (1980) Viscin threads inZeuxine strateumatica (Orchidaceae). Grana 19: 173–175.

    Google Scholar 

  • Vogel S. (1959) Organographie der Blüten kapländischer Ophrydeen mit Bemerkungen zum Koaptations-Problem. Teil I:Disinae undSatyrinae. Akademie der Wissenschaften und Literatur, Abhandlungen der mathematisch-na-turwissenschaftlichen Klasse, Jahrgang 1959, Nr. 6. Verlag der Akademie der Wissenschaften und der Literatur in Mainz, in Kommission bei Franz Steiner Verlag GmbH. Wiesbaden.

  • Vogel S., Cocucci A. (1988) Pollen threads inImpatiens: Their nature and function. Beitr. Biol. Pflanzen 63: 271–287.

    Google Scholar 

  • Waha M. (1984) Zur Ultrastruktur und Funktion pollenverbindender Fäden bei Ericaceae und anderen Angiospermenfamilien. Plant Syst. Evol. 147: 189–203.

    Google Scholar 

  • Wallace G. D. (1975) Interrelationship of the subfamilies of the Ericaceae and derivation of the Monotropoideae. Bot. Not. 128: 286–298.

    Google Scholar 

  • Weber M., Halbritter H., Hesse M. (1998) The spiny pollen wall inSauromatum (Araceae) — with special reference to the endexine. Int. J. Plant Sci. 159: 744–749.

    Google Scholar 

  • Willemstein S. C. (1987) An evolutionary basis for pollination ecology. Leiden University Press, Leiden.

    Google Scholar 

  • Wolter M., Seuffert C., Schill R. (1988) The ontogeny of pollinia and elastoviscin in the anther ofDoritis pulcherrima (Orchidaceae). Nordic J. Bot. 8: 77–88.

    Google Scholar 

  • Yeo P. (1993) Secondary Pollen Presentation. Form, Function and Evolution. Plant Syst. Evol. [Suppl.] 6: 1–268.

    Google Scholar 

  • Zetter R., Hesse M. (1996) The morphology of pollen tetrads and viscin threads in some Tertiary,Rhododendron-like Ericaceae. Grana 35: 285–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesse, M., Vogel, S. & Halbritter, H. Thread-forming structures in angiosperm anthers: Their diverse role in pollination ecology. Pl Syst Evol 222, 281–292 (2000). https://doi.org/10.1007/BF00984107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984107

Key words

Navigation