Skip to main content
Log in

Pollen grains: Why so many?

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

My objective is the examination of selective forces that affect pollen number. Relationships among other floral traits of animalpollinated plants, including pollen size, stigma area and depth, and the pollen-bearing area of the pollinator may affect pollen number and also provide a model to examine how change in one trait may elicit change in other traits. The model provides a conceptual framework for appreciating intra- and inter-specific differences in these traits. An equivalent model is presented for wind-pollinated plants. For these plants the distance between putative mates may be the most important factor affecting pollen number. I briefly consider how many pollen grains must reach a stigma to assure fruit set. I use pollen-ovule ratios (P/Os) to examine how breeding system, sexual system, pollen vector, and dispersal unit influence pollen grain number. I also compare the P/Os of plants with primary and secondary pollen presentation and those that provide only pollen as a reward with those that provide nectar as part or all of the reward. There is a substantial decrease in P/O from xenogamy to facultative xenogamy to autogamy. Relative to homoecious species the P/Os of species with most other sexual systems are higher. This suggests that there is a cost associated with changes in sexual system. The P/Os of wind-pollinated plants are substantially higher than those of animal-pollinated plants, and the available data suggest there is little difference in the pollination efficiency of the various animal vectors. The P/Os of plants whose pollen is dispersed in tetrads, polyads, or pollinia are substantially lower than those of species whose pollen is dispersed as monads. There was no difference in the P/Os of plants with primary and secondary pollen presentation. The P/Os of plants that provide only pollen as a reward were higher than those that provide nectar as a reward. All of these conclusions merit additional testing as they are based on samples that are relatively small and/or systematically biased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affre L., Thompson J. D., Debussche M. (1995) The reproductive biology of the Mediterranean endemicCyclamen balearicum Willk (Primulaceae). Bot. J. Linn. Soc. 118: 309–330.

    Google Scholar 

  • Ågren J., Willson M. F. (1991) Gender variation and sexual differences in reproductive characters and seed production in gynodioeciousGeranium maculatum. Amer. J. Bot. 78: 470–480.

    Google Scholar 

  • Aizen M. A., Raffaele E. (1998) Flowering-shoot defoliation affects pollen grain size and postpollination pollen performance inAlstroemeria aurea. Ecology 79: 2133–2142.

    Google Scholar 

  • Ali T., Ali S. I. (1989) Pollination biology ofCalotropis procera subsp.hamiltonii (Asclepiadaceae). Phyton 29: 175–188.

    Google Scholar 

  • Allison T. D. (1990) Pollen production and plant density affect pollination and seed production inTaxus canadensis. Ecology 71: 516–522.

    Google Scholar 

  • Armbruster W. C., Edwards M. E., Debevec E. M. (1994) Floral character displacement generates assemblage structure of Western Australian trigger plants (Stylidium). Ecology 75: 315–329.

    Google Scholar 

  • Arnold R. M. (1982a) Pollination, predation and seed set inLinaria vulgaris (Scrophulariaceae). Amer. Midl. Naturalist 107: 360–369.

    Google Scholar 

  • Arnold R. M. (1982b) Floral biology ofChaenorrhinum minus (Scrophulariaceae) a self-compatible annual. Amer. Midl. Naturalist 108: 317–324.

    Google Scholar 

  • Ashman T.-L., Stanton M. (1991) Seasonal variation in pollination dynamics of sexually dimorphicSidalcea oregana ssp.spicata (Malvaceae). Ecology 72: 993–1003.

    Google Scholar 

  • Bawa K. S., Webb C. J. (1983) Floral variation and sexual differentiation inMuntingia calabura (Elaeocarpaceae), a species with hermaphrodite flowers. Evolution 37: 1271–1282.

    Google Scholar 

  • Bernhardt P., Kenrick J., Knox R. B. (1984) Pollination biology and the breeding system ofAcacia retinodes (Leguminosae; Mimosoideae). Ann. Missouri Bot. Gard. 71: 17–29.

    Google Scholar 

  • Berry P. E., Calvo R. N. (1989) Wind pollination, self-incompatibility, and altitudinal shifts in pollination systems in the high andean genusEspeletia (Asteraceae). Amer. J. Bot. 76: 1602–1614.

    Google Scholar 

  • Bosch J. (1992) Floral biology and pollination of three co-occurringCistus species (Cistaceae). Bot. J. Linn. Soc. 109: 39–55.

    Google Scholar 

  • Brunet J., Charlesworth D. (1995) Floral sex allocation in sequentially blooming plants. Evolution 49: 70–79.

    Google Scholar 

  • Campbell C. S. (1982) Cleistogamy inAndropogon L. (Gramineae). Amer. J. Bot. 69: 1625–1635.

    Google Scholar 

  • Campbell D. R. (1998) Multiple paternity in fruits ofIpomopsis aggregata (Polemoniaceae). Amer. J. Bot. 85: 1022–1027.

    Google Scholar 

  • Casper B. B. (1983) The efficiency of pollen transfer and rates of embryo initiation inCryptantha (Boraginaceae). Oecologia 59: 262–268.

    Google Scholar 

  • Charnov E. L. (1982) The theory of sex allocation. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Cruden R. W. (1972) Pollination biology ofNemophila menziesii (Hydrophyllaceae) with comments on the evolution of oligolectic bees. Evolution 26: 373–389.

    Google Scholar 

  • Cruden R. W. (1973) Reproductive biology of weedy and cultivatedMirabilis (Nyctaginaceae). Amer. J. Bot. 60: 802–809.

    Google Scholar 

  • Cruden R. W. (1976) Intraspecific variation in pollen-ovule ratios and nectar secretion — Preliminary evidence of ecotypic adaptation. Ann. Missouri Bot. Gard. 63: 277–289.

    Google Scholar 

  • Cruden R. W. (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31: 32–46.

    Google Scholar 

  • Cruden R. W. (1997) Implications of evolutionary theory to applied pollination ecology. In: Richards K. W. (ed.) Proceedings of the 7th International Symposium on Pollination. Acta Horticulturae 437: 27–51.

    Google Scholar 

  • Cruden R. W., Hermann-Parker S. M. (1979) Butterfly pollination ofCaesalpinia pulcherrima (Leguminosae) with observations on a psychophilous syndrome. J. Ecology 67: 155–168.

    Google Scholar 

  • Cruden R. W., Jensen K. G. (1979) Viscin threads, pollination efficiency and low pollen-ovule ratios. Amer. J. Bot. 66: 875–879.

    Google Scholar 

  • Cruden R. W., Lloyd R. M. (1995) Embryophytes have equivalent sexual phenotypes and breeding systems: Why not a common terminology to describe them? Amer. J. Bot. 82: 816–825.

    Google Scholar 

  • Cruden R. W., Lyon D. L. (1985) Correlations among stigma depth, style length, and pollen grain size: Do they reflect function or phylogeny? Bot. Gaz. 146: 143–149.

    Google Scholar 

  • Cruden R. W., Lyon D. L. (1989) Facultative Xenogamy: examination of a mixed-mating system. In: Bock J., Linhart Y. B. (eds.) The evolutionary ecology of plants. Westview Press, Boulder, Colorado, pp. 171–207.

    Google Scholar 

  • Cruden R. W., Miller-Ward S. (1981) Pollen-ovule ratio, pollen size, and the ratio of stigmatic area to the pollen-bearing area of the pollinator: an hypothesis. Evolution 35: 964–974.

    Google Scholar 

  • Cruden R. W., Kinsman S., Stockhouse R. E. II, Linhart Y. B. (1976) Pollination, fecundity, and the distribution of moth-flowered plants. Biotropica 8: 204–210.

    Google Scholar 

  • Cruzan M. B. (1986) Pollen tube distributions inNicotiana glauca: evidence for density dependent growth. Amer. J. Bot. 73: 902–907.

    Google Scholar 

  • Cunningham S. A. (1995) Ecological constraints on fruit initiation byCalyptrogyne ghiesbreghtiana (Arecaceae): floral herbivory, pollen availability, and visitation by pollinating bats. Amer. J. Bot. 82: 1527–1536.

    Google Scholar 

  • Dafni A. (1996) Autumnal and winter pollination adaptations under Mediterranean conditions. Bocconea 5: 171–181.

    Google Scholar 

  • Dahl Å. E. (1989) Taxonomic and morphological studies inHypecoum sect.Hypecoum (Papeveraceae). Plant Syst. Evol. 163: 227–280.

    Google Scholar 

  • Dajoz I., Sandmeier M. (1997) Plant size effects on allocation to male and female functions in pearl millet, a hermaphroditic wind-pollinated species. Canad. J. Bot. 75: 228–235.

    Google Scholar 

  • Delph L. F., Johannsson M. H., Stephenson A. G. (1997) How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology 78: 1632–1639.

    Google Scholar 

  • Devlin B. (1989) Components of seed yield and pollen yield ofLobelia cardinalis: variation and correlations. Amer. J. Bot. 76: 204–214.

    Google Scholar 

  • Devlin B., Stephenson A. G. (1984) Factors that influence the duration of the staminatae and pistillate phases ofLobelia cardinalis flowers. Bot. Gaz. 145: 323–328.

    Google Scholar 

  • Díaz Lifante Z. (1996) Reproductive biology ofAsphodelus aestivus (Asphodelaceae). Plant Syst. Evol. 200: 177–191.

    Google Scholar 

  • Dudash M. R. (1991) Plant size effects on female and male function in hermaphroditicSabatia angularis (Gentianaceae). Evolution 72: 1004–1012.

    Google Scholar 

  • Dulberger R. (1981) The floral biology ofCassia didymobotrya andC. auriculata (Caesalpiniaceae). Amer. J. Bot. 68: 1350–1360.

    Google Scholar 

  • Dulberger R., Ornduff R. (1980) Floral morphology and reproductive biology of four species ofCyanella (Tecophilaceae). New Phytol. 86: 45–56.

    Google Scholar 

  • Edwards J., Jordan J. R. (1992) Reversible anther opening inLilium philadelphicum (Liliaceae): a possible means of enhancing male fitness. Amer. J. Bot. 79: 144–148.

    Google Scholar 

  • Feliner G. N. (1991) Breeding systems and related floral traits in severalErysimum (Cruciferae). Canad. J. Bot. 69: 2515–2521.

    Google Scholar 

  • Eisikowitch D., Woodell S. R. J. (1974) The effect of water on pollen germination in two species ofPrimula. Evolution 28: 692–694.

    Google Scholar 

  • Frazee J. E., Marquis R. J. (1994) Environmental contribution to floral trait variation inChamaecrista fasciculata (Fabaceae: Caseslpinoideae). Amer. J. Bot. 81: 206–215.

    Google Scholar 

  • Freeman D. C., Klikoff L. G., Harper K. T. (1976) Differential resource utilization by the sexes of dioecious plants. Science 193: 597–599.

    Google Scholar 

  • Galen C., Stanton M. L. (1989) Bumble bee pollination and floral morphology: factors influencing pollen dispersal in the alpine sky pilot,Polemonium viscosum (Polemoniaceae). Amer. J. Bot. 76: 419–426.

    Google Scholar 

  • González M. V., Coque M., Herrero M. (1996) Pollen-pistil interaction in kiwifruit (Actinidia deliciosa; Actinidiaceae). Amer. J. Bot. 83: 148–154.

    Google Scholar 

  • Hammer K. (1978) Entwicklungstendenzen blütenökologischer Merkmale beiPlantago. Flora 167: 41–56.

    Google Scholar 

  • Hannan G. L., Prucher H. A. (1996) Reproductive biology ofCaulophyllum thalictroides (Berberidaceae), an early flowering perennial of eastern North America. Amer. Midl. Naturalist 136: 267–277.

    Google Scholar 

  • Hernandez H. M. (1989) Systematics ofZapoteca (Leguminosae). Ann. Missouri Bot. Gard. 76: 781–862.

    Google Scholar 

  • Honig M. A., Linder H. P., Bond W. J. (1992) Efficacy of wind pollination: pollen load size and natural microgametophyte populations in windpollinatedStaberoha banksii (Restionaceae). Amer. J. Bot. 79: 443–448.

    Google Scholar 

  • Hopkins H. C. (1984) Floral biology and pollination ecology of the neotropical species ofParkia. J. Ecology 72: 1–23.

    Google Scholar 

  • Horovitz A., Beiles A. (1980) Gynodioecy as a possible population strategy for increasing reproductive output. Theor. Appl. Genet. 57: 11–15.

    Google Scholar 

  • Howell G. J., Slater A. T., Know R. B. (1993) Secondary pollen presentation in angiosperms and its biological significance. Austral. J. Bot. 41: 417–438.

    Google Scholar 

  • Inouye D. W., Gill D. E., Dudash M. R., Fenster C. B. (1994) A model and lexicon for pollen fate. Amer. J. Bot. 81: 1517–1530.

    Google Scholar 

  • Inoue K., Maki M. J., Masuda M. (1996) Evolution ofCampanula flowers in relation to insect pollinators on islands. In: Lloyd D. G., Barrett S. C. H. (eds.) Floral Biology, Studies on Floral Evolution in Animal-Pollinated plants. Chapman & Hall, New York, pp. 377–400.

    Google Scholar 

  • Jacquemart A.-L. (1997) Floral and pollination biology of the four EuropeanVaccinium (Ericaceae) species in the Upper Ardennes, Belgium. In: Richards K. W. (ed.) Proceedings of the 7th International Symposium on Pollination. Acta Horticulturae 437: 401–405.

    Google Scholar 

  • Kenrick J., Knox R. B. (1982) Function of the polyad in reproduction ofAcacia. Ann. Bot. 50: 721–727.

    Google Scholar 

  • Kerner von Marilaun A. (1897) The natural history of plants. Translated by Oliver F. W. Blackie & Son, London.

  • Kirk W. D. J. (1993) Interspecific size and number variation in pollen grains and seeds. Biol. J. Linn. Soc. 49: 239–248.

    Google Scholar 

  • Knox R. B., Kenrick J. (1983) Polyad function in relation to the breeding system ofAcacia. In: Mulcahy D. L., Ottaviano E. (eds.) Pollen: Biology and Implications for Plant Breeding. Elsevier Science Publishing Company, New York, pp. 411–417.

    Google Scholar 

  • Knudsen J. T., Olesen J. M. (1993) Buzz-pollination and patterns of sexual traits in north European Pyrolaceae. Amer. J. Bot. 80: 900–913.

    Google Scholar 

  • Koptur S. (1984) Outcrossing and pollinator limitation of fruit set: breeding systems of neotropicalInga trees (Fabaceae: Mimosoideae). Evolution 38: 1130–1143.

    Google Scholar 

  • Kress W. J. (1981) Sibling competition and evolution of pollen unit, ovule number, and pollen vector in angiosperms. Syst. Bot. 6: 101–112.

    Google Scholar 

  • Krupnick G. A., Weis A. E. (1999) The effect of floral herbivory on male and female reproductive success inIsomeris arborea. Ecology 80: 135–149.

    Google Scholar 

  • Krupnick G. A., Weis A. E., Campbell D. R. (1999) The consequences of floral herbivory for pollinator service toIsomeris arborea. Ecology 80: 125–134.

    Google Scholar 

  • Kunze H. (1991) Structure and function in asclepiad pollination. Plant Syst. Evol. 176: 227–253.

    Google Scholar 

  • Kunze H., Liede S. (1991) Observations on pollination inSarcostemma (Asclepiadaceae). Plant Syst. Evol. 178: 95–105.

    Google Scholar 

  • Lamont B. B., Barrett G. J. (1988) Constraints on seed production and storage in a root-suckeringBanksia. J. Ecology 76: 1069–1082.

    Google Scholar 

  • Lau T.-C., Stephenson A. G. (1993) Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance inCucurbita pepo (Cucurbitaceae). Amer. J. Bot. 80: 763–768.

    Google Scholar 

  • Lau T.-C., Stephenson A. G. (1994) Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and ability to sire seeds inCucurbitia pepo (Cucurbitaceae). Sexual Pl. Reprod. 7: 215–220.

    Google Scholar 

  • Lawrence M. E. (1985)Senecio L. (Asteraceae) in Australia: reproductive biology of a genus found primarily in unstable environments. Austral. J. Bot. 33: 197–208.

    Google Scholar 

  • Lehtilä K., Strauss S. Y. (1999) Effects of foliar herbivory on male and female reproductive traits of wild radish,Raphanus raphanistrum. Ecology 80: 116–124.

    Google Scholar 

  • Lindsey A. H. (1982) Floral phenology patterns and breeding systems inThaspium andZizia (Apiaceae). Syst. Bot. 7: 1–12.

    Google Scholar 

  • Lisci M., Tanda C., Pacini E. (1994) Pollination ecophysiology ofMercurialis annua L. (Euphorbiaceae), an anemophilous species flowering all year. Ann. Bot. 74: 125–135.

    Google Scholar 

  • Lloyd D. G. (1979) Parental strategies of angiosperms. New Zealand J. Bot. 17: 595–606.

    Google Scholar 

  • Lloyd D. G., Wells M. S. (1992) Reproductive biology of a primitive angiosperm,Pseudowintera colorata (Winteraceae) and the evolution of pollination systems in Anthophyta. Plant Syst. Evol. 181: 77–95.

    Google Scholar 

  • López J., Rodríguez-Riaño T., Ortega-Olivencia A., Devesa J. A., Ruiz T. (1999) Pollination mechanisms and pollen-ovule ratios in some Genisteae (Fabaceae) from southwestern Europe. Plant Syst. Evol. 216: 23–47.

    Google Scholar 

  • Lyon D. L. (1992) Bee pollination of facultatively xenogamousSanguinaria canadensis L. Bull. Torrey Bot. Club 119: 368–375.

    Google Scholar 

  • Maki M. (1993) Outcrossing and fecundity advantage of females in gynodioeciousChionographis japonica var.kurohimensis (Liliaceae). Amer. J. Bot. 80: 629–634.

    Google Scholar 

  • Medan D. (1993) Breeding system and maternal success of a perennial hermaphrodite,Discaria americana (Rhamnaceae). New Zealand J. Bot. 31: 175–184.

    Google Scholar 

  • Medan D. (1994) Reproductive biology ofFrangula alnus (Rhamnaceae) in southern Spain. Plant Syst. Evol. 193: 173–186.

    Google Scholar 

  • Medan D., D'Ambrogio A. C. (1998) Reproductive biology of the andromonoecious shrubTrevoa quinquenervia (Rhamnaceae). Bot. J. Linn. Soc. 126: 191–196.

    Google Scholar 

  • Mehrhoff L. A. III (1983) Pollination in the genusIsotria (Orchidaceae). Amer. J. Bot. 70: 1444–1453.

    Google Scholar 

  • Mejias J. A. (1994) Self-fertility and associated flower head traits in the Iberian taxa ofLactuca and related genera. (Asteraceae: Lactuceae). Plant Syst. Evol. 191: 147–160.

    Google Scholar 

  • Mione T., Anderson G. L. (1992) Pollen-ovule ratios and breeding system evolution inSolanum sectionBasarthrum (Solanaceae). Amer. J. Bot. 79: 279–287.

    Google Scholar 

  • Molau U. (1991) Gender variation inBartsia alpina (Scrophulariaceae), a subarctic perennial hermaphrodite. Amer. J. Bot. 78: 326–339.

    Google Scholar 

  • Muona O., Moran G. F., Bell J. C. (1991) Hierarchical patterns of correlated mating inAcacia melanoxylon. Genetics 127: 619–626.

    Google Scholar 

  • Murcia C. (1990) Effect of floral morphology and temperature on pollen receipt and removal inIpomoea trichocarpa. Ecology 71: 1098–1109.

    Google Scholar 

  • Mutikainen P., Delph L. F. (1996) Effects of herbivory on male reproductive success in plants. Oikos 75: 353–358.

    Google Scholar 

  • Nassar J. M., Ramírez N., Linares O. (1997) Comparative pollination biology of Venezuelan columnar cacti and the role of nectar-feeding bats in their sexual reproduction. Amer. J. Bot. 84: 918–927.

    Google Scholar 

  • Neiland M. R. M., Wilcock C. C. (1995) Maximisation of reproductive success by European Orchidaceae under conditions of infrequent pollination. Protoplasma 187: 39–48.

    Google Scholar 

  • Nepi M., Pacini E. (1993) Pollination, pollen viability and pistil receptivity inCucurbita pepo. Ann. Bot. 72: 527–536.

    Google Scholar 

  • Niesenbaum R. A. (1999) The effects of pollen load size and donor diversity on pollen performance, selective abortion, and progeny vigor inMirabilis jalapa (Nyctaginaceae). Amer. J. Bot. 86: 261–268.

    Google Scholar 

  • Niklas K. J. (1985) The aerodynamics of wind pollination. Bot. Rev. 51: 328–386.

    Google Scholar 

  • Norman E. M., Clayton D. (1986) Reproductive biology of two Florida pawpaws:Asimina obovata andA. pygmaea (Annonaceae). Bull. Torrey Bot. Club 113: 16–22.

    Google Scholar 

  • Norman E. M., Rice K., Cochran S. (1992) Reproductive biology ofAsimina parviflora (Annonaceae). Bull. Torrey Bot. Club 119: 1–5.

    Google Scholar 

  • Ohara M., Higashi S. (1994) Effects of inflorescence size on visits from pollinators and seed set inCorydalis ambigua (Papaveraceae). Oecologia 98: 25–30.

    Google Scholar 

  • Olesen I., Warncke E. (1992) Breeding system and seasonal variation in seed set in a population ofPotentilla palustris. Nordic J. Bot. 12: 373–380.

    Google Scholar 

  • Oliveira P. E. A. M. de, Sazima M. (1990) Pollination biology of two species ofKielmeyera (Guttiferae) from Brazilian cerrado vegetation. Plant Syst. Evol. 172: 35–49.

    Google Scholar 

  • Ornduff R. (1976) The reproductive system ofAmsinckia grandiflora, a distylous species. Syst. Bot. 1: 57–66.

    Google Scholar 

  • Ornduff R. (1980) Heterostyly, population composition and pollen flow inHedyotis caerulea. Amer. J. Bot. 67: 95–103.

    Google Scholar 

  • Ornduff R. (1986) Comparative fecundity and population composition of heterostylous and non-heterostyous species ofVillarsia (Menyanthaceae) in western Australia. Amer. J. Bot. 73: 282–286.

    Google Scholar 

  • Osborn J. M., Taylor T. N., Schneider E. L. (1991) Pollen morphology and ultrastructure of the Cabombaceae: correlations with pollination biology. Amer. J. Bot. 78: 1367–1378.

    Google Scholar 

  • Osborn M. M., Kevan P. G., Lane M. A. (1988) Pollination biology ofOpuntia polycantha andOpuntia phaeacantha (Cactaceae). Plant Syst. Evol. 159: 85–94.

    Google Scholar 

  • Pellmyr O. (1985) Pollination ecology ofCimicifuga arizonica (Ranunculaceae). Bot. Gaz. 146: 404–412.

    Google Scholar 

  • Pellmyr O. (1986) Pollination ecology of two nectariferousCimicifuga sp. (Ranunculaceae) and the evolution of andromonoecy. Nordic J. Bot. 6: 129–138.

    Google Scholar 

  • Pellmyr O. (1987) Temporal patterns of ovule allocation, fruit set, and seed predation inAnemonopsis macrophylla (Ranunculaceae). Bot. Mag. (Tokyo) 100: 175–183.

    Google Scholar 

  • Philbrick C. T., Anderson G. J. (1987) Implications of pollen/ovule ratios for the reproductive biology ofPotamogeton and autogamy in aquatic angiosperms. Syst. Bot. 12: 98–105.

    Google Scholar 

  • Plitmann U., Levin D. A. (1990) Breeding systems in the Polemoniaceae. Plant Syst. Evol. 170: 205–214.

    Google Scholar 

  • Pohl F. (1937) Die Pollenerzeugung der Windblütler. Beih. Bot. Centralbl. 56: 365–470.

    Google Scholar 

  • Preston R. E. (1986) Pollen-ovule ratios in the Cruciferae. Amer. J. Bot. 73: 1732–1740.

    Google Scholar 

  • Primack R. G. (1980a) Variation in the phenology of natural populations of montane shrubs in New Zealand. J. Ecol. 68: 849–862.

    Google Scholar 

  • Primack R. G. (1980b) Andromonoecy in the New Zealand montane shrub manuka,Leptospermum scoparium (Myrtaceae). Amer. J. Bot. 67: 361–368.

    Google Scholar 

  • Proctor H. C., Harder L. D. (1994) Pollen load, capsule weight, and seed production in three orchid species. Canad. J. Bot. 72: 249–255.

    Google Scholar 

  • Proctor M., Yeo P. (1972) The pollination of flowers. Taplinger Publishing Company, New York.

    Google Scholar 

  • Queller D. C. (1984) Pollen-ovule ratios and hermaphrodite sexual allocation strategies. Evolution 38: 1148–1151.

    Google Scholar 

  • Quesada M., Bollman K., Stephenson A. G. (1995) Leaf damage decreases pollen production and hinders pollen performance inCucurbita texana. Ecology 76: 437–443.

    Google Scholar 

  • Ramirez N., Seres A. (1994) Plant reproductive biology of herbaceous monocots in a Venezuelan tropical cloud forest. Plant Syst. Evol. 190: 129–142.

    Google Scholar 

  • Ramsey M. (1993) Floral morphology, biology and sex allocation in disjunct populations of Christmas Bells (Blandfordia grandiflora, Liliaceae) with different breeding systems. Austral. J. Bot. 41: 749–762.

    Google Scholar 

  • Ramsey M., Vaughton G. (1991) Self-incompatibility, protandry, pollen production and pollen longevity inBanksia menziesii. Austral. J. Bot. 39: 497–505.

    Google Scholar 

  • Ramsey M. W., Cairns S. C., Vaughton G. V. (1994) Geographical variation in morphological and reproductive characters of coastal and tableland populations ofBlanfordia grandiflora (Liliaceae). Plant Syst. Evol. 192: 215–230.

    Google Scholar 

  • Richardson T. E., Stephenson A. G. (1989) Pollen removal and pollen deposition affect the duration of the staminate and pistillate phases inCampanula rapunculoides. Amer. J. Bot. 76: 532–538.

    Google Scholar 

  • Schemske D. W., Fenster C. (1983) Pollen-grain interactions in a neotropical Costus: effects of clump size and competitors. In: Mulcahy D. L., Ottaviano E. (eds.) Pollen: Biology and Implications for Plant Breeding. Elsevier Science Publishing Company, New York, pp. 405–410.

    Google Scholar 

  • Schlessman M. A. (1982) Expression of andromonecy and pollination of tuberous Lomatiums (Umbelliferae). Syst. Bot. 7: 134–149.

    Google Scholar 

  • Schlising R. A., Ikeda D. H., Morey S. C. (1980) Reproduction in a Great Basin evening primrose,Camissonia tanacetifolia (Onagraceae). Bot. Gaz. 141: 290–293.

    Google Scholar 

  • Schneider E. L., Jeter J. M. (1982) Morphological studies of the Nymphaceae. XII. The floral biology ofCabomba caroliniana. Amer. J. Bot. 69: 1410–1419.

    Google Scholar 

  • Schuster A., Noy-Meir I., Heyn C. C., Dafni A. (1993) Pollination dependent female reproductive success in a self-compatible outcrosser,Asphodelus aestivus Brot. New Phytol. 123: 165–174.

    Google Scholar 

  • Sharma N., Koul P., Koul A. K. (1992) Genetic systems of six species of Plantago (Plantaginaceae). Plant Syst. Evol. 181: 1–9.

    Google Scholar 

  • Short P. S. (1981) Pollen-ovule ratios, breeding system and distribution patterns of some Australian Gnaphaliinae (Compositae: Inuleae). Muelleria 4: 395–417.

    Google Scholar 

  • Small E. (1988) Pollen-ovule patterns in tribe Trifolieae (Leguminosae). Plant Syst. Evol. 160: 195–205.

    Google Scholar 

  • Snow A. A. (1982) Pollination intensity and potential seed set inPassiflora vitifolia. Oecologia (Berl.) 55: 231–237.

    Google Scholar 

  • Snow A. A. (1986) Pollination dynamics inEpilobium canum (Onagraceae): consequences for gametophytic selection. Amer. J. Bot. 73: 139–151.

    Google Scholar 

  • Sokal R. R., Rohlf F. J. (1969) Biometry. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Spira T. P. (1980) Floral parameters, breeding system and pollinator type inTrichostema (Labiatae). Amer. J. Bot. 67: 278–284.

    Google Scholar 

  • Stanton M. L., Preston R. E. (1988) Ecological consequences and phenotypic correlates of petal size variation in wild radish,Raphanus sativus (Brassicaceae). Amer. J. Bot. 75: 528–539.

    Google Scholar 

  • Stephenson A. G. (1981) Flower and fruit abortion: proximate causes and ultimate functions. Ann. Rev. Ecol. Syst. 12: 253–279.

    Google Scholar 

  • Stevens D. P. (1988) On the gynodioecious polymorphism inSaxifraga granulata L. (Saxifragaceae). Biol. J. Linn. Soc. 35: 15–28.

    Google Scholar 

  • Strauss S. Y. (1997) Floral characters link herbivores, pollinators, and plant fitness. Ecology 78: 1640–1645.

    Google Scholar 

  • Thomas S. M., Murray B. G. (1981) Breeding systems and hybridization inPetrorhagia sect.Kohlrauschia (Caryophyllaceae). Plant Syst. Evol. 139: 77–94.

    Google Scholar 

  • Thomson J. D. (1985) Pollination and seed set inDiervilla lonicera (Caprifoliaceae): temporal patterns of flower and ovule deployment. Amer. J. Bot. 72: 737–740.

    Google Scholar 

  • Thomson J. D., Barrett S. C. H. (1981) Temporal variation of gender inAralia hispida Vent. (Araliaceae). Evolution 35: 1094–1107.

    Google Scholar 

  • Thomson J. D., McKenna M. A., Curzan M. B. (1989) Temporal patterns of nectar and pollen production inAralia hispida: implications for reproductive success. Ecology 70: 1061–1068.

    Google Scholar 

  • Tomlinson R. B., Primack R. B., Bunt J. S. (1979) Preliminary observations on floral biology in mangrove Rhizophoraceae. Biotropica 11: 256–277.

    Google Scholar 

  • Travers S. E. (1999) Pollen performance of plants in recently burned and unburned environments. Ecology 80: 2427–2434.

    Google Scholar 

  • Uma Shaanker R., Ganeshaiah K. N., Bawa K. S. (1988) Parent-offspring conflict, sibling rivalry, and brood size patterns in plants. Ann. Rev. Ecol. Syst. 19: 177–205.

    Google Scholar 

  • Vasek F. C., Weng V. (1988) Breeding systems ofClarkia sect.Phaeostoma (Onagraceae): I. Pollen-ovule ratios. Syst. Bot. 13: 336–350.

    Google Scholar 

  • Vasek F. C., Weng V., Beaver R. J., Huszar C. K. (1987) Effects of mineral nutrition on components of reproduction inClarkia unguiculata. Aliso 11: 599–618.

    Google Scholar 

  • Vogel S. (1978) Evolutionary shifts from reward to deception in pollen flowers. In: Richards A. J. (ed.) The Pollination of Flowers by Insects. Academic Press, London, pp. 89–96.

    Google Scholar 

  • Vogler D. W., Peretz S., Stephenson A. G. (1999) Floral plasticity in an interoparous plant: the interactive effects of genotype, environment, and ontogeny inCampanula rapunculoides (Campanulaceae). Amer. J. Bot. 86: 482–494.

    Google Scholar 

  • Vonhof J. J., Harder L. D. (1995) Size-number trade-offs and pollen production by papilionaceous legumes. Amer. J. Bot. 82: 230–238.

    Google Scholar 

  • Vuille F.-L. (1987) Reproductive biology of the genusDamasonium (Alismataceae). Plant Syst. Evol. 157: 63–71.

    Google Scholar 

  • Vuille F.-L. (1988) The reproductive biology of the genusBaldellia (Alismataceae). Plant Syst. Evol. 159: 173–183.

    Google Scholar 

  • Webb C. J. (1984) Constraints on the evolution of plant breeding systems and their relevance to systematics. In: Grant W. F. (ed.) Plant Biosystematics. Academic Press, New York, NY, pp. 249–270.

    Google Scholar 

  • Webb C. J. (1994) Pollination, self-incompatibility, and fruit production inCorokia cotoneaster (Escallohiaceae). New Zealand J. Bot. 32: 385–392.

    Google Scholar 

  • Weis I. M., Hermanutz L. A. (1993) Pollination dynamics of arctic dwarf birch (Betula glandulosa; Betulaceae) and its role in the loss of seed production. Amer. J. Bot. 80: 1021–1027.

    Google Scholar 

  • Williams E. G., Rouse J. L. (1990) Relationships of pollen size, pistil length, and pollen tube growth rates inRhododendron and their influence on hybridization. Sexual Pl. Reprod. 3: 7–17.

    Google Scholar 

  • Wyatt R., Broyles S. B. (1992) Hybridization in North AmericanAsclepias. III. Isozyme evidence. Syst. Bot. 17: 640–648.

    Google Scholar 

  • Yeo P. F. (1993) Secondary Pollen Presentation — Form, Function and Evolution. Springer, Wien New York.

    Google Scholar 

  • Young H. J., Stanton M. L. (1990a) Temporal patterns of gamete production within individuals ofRaphanus sativus (Brassicaceae). Canad. J. Bot. 68: 480–486.

    Google Scholar 

  • Young H. J., Stanton M. L. (1990b) Influence of environmental quality on pollen competitive ability in wild radish. Science 248: 1631–1633.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruden, R.W. Pollen grains: Why so many?. Pl Syst Evol 222, 143–165 (2000). https://doi.org/10.1007/BF00984100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984100

Key words

Navigation