Skip to main content
Log in

Pollen wall stratification and pollination

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Qualities of the stratified pollen walls were evaluated for their possible role in pollination (pollination modes, and pollen tube formation). The importance of studying pollen grains in their respective natural state is noted. Examples of pollen morphological features specific to pollination vectors are rare and difficult to demonstrate. However, some complex, but significant correlations are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman J. D. (1995) Convergence of filiform pollen morphologies in seagrasses: Functional mechanisms. Evol. Ecol. 9: 139–153.

    Google Scholar 

  • Bagni N., Tassoni A., Franceschetti M. (1999) Polyamines and gene expression of biosynthetic enzymes in sexual plant reproduction. In: Cresti M., Cai G., Moscatelli A. S. (eds.) Fertilization in Higher Plants. Molecular and Cytological Aspects. Springer, Heidelberg, pp. 1–11.

    Google Scholar 

  • Barnes S. H., Blackmore S. (1986) Some functional features in pollen development. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto, pp. 71–80.

    Google Scholar 

  • Bernadello G., Anderson G. J., Lopez S. P., Cleland M. A., Stuessy T. F., Crawford D. J. (1999) Reproductive biology ofLactoris fernandeziana (Lactoridaceae). Amer. J. Bot. 86: 829–840.

    Google Scholar 

  • Blackmore S., Barnes S. H. (1986) Freeze fracture and cytoplasmic maceration of pollen grains. Grana 25: 41–45.

    Google Scholar 

  • Blackmore S., Barnes S. H. (1991) Pollen and Spores: Patterns of Diversification. Clarendon Press, Oxford.

    Google Scholar 

  • Blackmore S., Ferguson I. K. (1986) Pollen and Spores. Form and Function. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto.

    Google Scholar 

  • Bolick M. R. (1978) Taxonomic, evolutionary, and functional considerations of Compositae pollen ultrastructure and sculpture. Plant Syst. Evol. 130: 209–218.

    Google Scholar 

  • Brummitt R. K., Ferguson I. K., Poole M. M. (1980) A unique and extraordinary pollen type in the genusCrossandra (Acanthaceae). Pollen Spores 22: 11–16.

    Google Scholar 

  • Burns-Balogh P., Funk V. A. (1986) A phylogenetic analyses of the Orchidaceae. Smithsonian Contrib. Bot. 61: 1–79.

    Google Scholar 

  • Burns-Balogh P., Hesse M. (1988) Pollen morphology of the cypripedioid orchids. Plant Syst. Evol. 158: 165–182.

    Google Scholar 

  • Chaloner W. G. (1986) Electrostatic forces in insect pollination and their significance in exine ornament. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Linnean Society Symposium Series 12: 103–108. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto.

    Google Scholar 

  • Corbet S. A., Beament J., Eisikowitch D. (1982) Are electrostatic forces involved in pollen transfer? Plant Cell Environ. 5: 125–129.

    Google Scholar 

  • Cox P. A. (1984) Chiropterophily and ornithophily inFreycinetia (Pandanaceae) in Samoa. Plant Syst. Evol. 144: 277–290.

    Google Scholar 

  • Cox P. A. (1991) Hydrophilous pollination of a dioecious seagrass,Thalassodendron ciliatum (Cymonodeaceae) in Kenya. Biotropica 23: 159–165.

    Google Scholar 

  • Cox P. A., Humphries C. J. (1993) Hydrophilous pollination and breeding system evolution in seagrasses: a phylogenetic approach to the evolutionary ecology of the Cymodoceaceae. Bot. J. Linn. Soc. 113: 217–226.

    Google Scholar 

  • Cox P. A., Knox R. B. (1989) Two-dimensional pollination in hydrophilous plants: convergent evolution in the generaHalodule (Cymodoceaceae),Halophila (Hydrocharitaceae),Ruppia (Ruppiaceae), andLepilaena (Zannichelliaceae). Amer. J. Bot. 76: 164–175.

    Google Scholar 

  • Crepet W. L. (1979) Some aspects of the pollination biology of middle eocene angiosperms. Rev. Palaeobot. Palynol. 27: 213–238.

    Google Scholar 

  • Dressler R. L. (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge.

    Google Scholar 

  • Dunbar A. (1967) Wachs im Sporoderm vonPlumbago capensis. Grana Palynol. 7: 10–15.

    Google Scholar 

  • Dunbar A. (1973) Pollen development in theEleocharis palustris group (Cyperaceae). Bot. Not. 126: 197–254.

    Google Scholar 

  • El-Ghazaly G. (1999) Development and substructures of pollen grains wall. In: Cresti M., Cai G., Moscatelli A. S. (eds.) Fertilization in Higher Plants. Molecular and Cytological Aspects. Springer, Heidelberg, pp. 175–200.

    Google Scholar 

  • El-Ghazaly G., Grafström E. (1995) Morphological and histochemical differentiation of the pollen wall ofBetula pendula Roth, during dormancy up to anthesis. Protoplasma 187: 88–102.

    Google Scholar 

  • El-Ghazaly G., Rowley J. R. (1999) Microspore and tapetal development inEchinodorus cordifolius. Nordic J. Bot. 19: 101–120.

    Google Scholar 

  • Erickson E. H., Buchmann S. L. (1983) Electrostatics and pollination. In: Jones C. E., Little R. J. (eds.) Handbook of experimental pollination biology. Scientific and Academic Editions, New York Cincinnati Toronto London Melbourne, pp. 173–184.

    Google Scholar 

  • Ferguson I. K., Dransfield J., Page F. C., Thanikaimoni G. (1983) Notes on the pollen morphology ofPinanga with special reference toP. aristata andP. pilosa (Palmae: Arecoideae). Grana 22: 65–72.

    Google Scholar 

  • Ferguson I. K., Harley M. M. (1993) The significance of new and recent work on pollen morphology in the Palmae. Kew Bull. 48: 205–243.

    Google Scholar 

  • Ferguson I. K., Pearce K. J. (1986) Observations on the pollen morphology of the genusBauhinia L. (Leguminosae: Caesalpiniaceae) in the neotropics. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Linnean Society Symposium Series 12: 283–296. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto.

    Google Scholar 

  • Ferguson I. K., Skvarla J. J. (1982) Pollen morphology in relation to pollinators in Papilionoideae (Leguminosae). Bot. J. Linn. Soc. 84: 183–193.

    Google Scholar 

  • Franchi G. G., Pacini E. (1996) Types of pollination and seed dispersal in mediterranean plants. Giorn. Bot. Ital. 130: 579–585.

    Google Scholar 

  • Freytag K. (1958) Doppelbrechende Stäbchen im Ölüberzug der Pollenkörner. Grana Palynol. 1: 10–14.

    Google Scholar 

  • Furness C. A. (1995) Examinations of the ultrastructure and function of caveate Acanthaceae pollen, using rehydrated herbarium material. Grana 34: 1–9.

    Google Scholar 

  • Furness C. A., Rudall P. J. (1999) Inaperturate pollen in Monocotyledons. Int. J. Plant Sci. 160: 395–414.

    Google Scholar 

  • Galati B. G., Rosenfeld S. (1998) The pollen development inCeiba insignis (Kunth) Gibbs & Semir exChorisia speciosa St. Hil. (Bombacaceae). Phytomorphology 48: 121–130.

    Google Scholar 

  • Giuliano G. (1999) Carotenoid biosynthesis in plant reproductive organs: regulation and possible functions. In: Cresti M., Cai G., Moscatelli A. S. (eds.) Fertilization in Higher Plants. Molecular and Cytological Aspects. Springer, Heidelberg, pp. 13–21.

    Google Scholar 

  • Grayum M. H. (1986) Correlations between pollination biology and pollen morphology in the Araceae, with some implications for angiosperm evolution. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Linnean Society Symposium Series 12: 313–327. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto.

    Google Scholar 

  • Grayum M. H. (1992) Comparative external pollen ultrastructure of the Araceae and putatively related taxa. Missouri Botanical Garden, St. Louis, Missouri.

    Google Scholar 

  • Halbritter H., Hesse M. (1993) Sulcus morphology in some monocot families. Grana 32: 87–99.

    Google Scholar 

  • Hemsley A. J., Ferguson I. K. (1985) Pollen morphology of the genusErythrina (Leguminosae: Papilionoideae) in relation to floral structure and pollinators. Ann. Missouri Bot. Garden 72: 570–590.

    Google Scholar 

  • Heslop-Harrison J. (1979) Pollen walls as adaptive systems. Ann. Missouri Bot. Garden 66: 813–829.

    Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1991) Structural and functional variation in pollen intines. In: Blackmore S., Barnes S. H. (eds.) Pollen and Spores. Patterns of Diversification. The Systematics Association Special Volume 44: 331–344. Clarendon Press, Oxford.

    Google Scholar 

  • Hesse M. (1979) Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomo- und anemophilen Angiospermen: Salicaceae, Tiliaceae und Ericaceae. Flora 168: 540–557.

    Google Scholar 

  • Hesse M. (1980) Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomophilen und anemophilen Angiospermensippen der Alismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae und Araceae. Plant Syst. Evol. 134: 229–267.

    Google Scholar 

  • Hesse M., Bogner J., Halbritter H., Weber M. (2000) Palynology of the perigoniate Aroideae:Zamioculcas, Gonatopus andStylochaeton (Araceae). Grana (in press).

  • Hesse M., Burns-Balogh P., Wolff M. (1989) Pollen morphology of the “primitive” epidendroid orchids. Grana 28: 261–278.

    Google Scholar 

  • Hesse M., Waha M. (1989) A new look at the acetolysis method. Plant Syst. Evol. 163: 147–152.

    Google Scholar 

  • Huysmans S., El-Ghazaly G., Smets E. (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Bot. Rev. 64: 240–272.

    Google Scholar 

  • Klaus W. (1987) Einführung in die Paläobotanik. Fossile Pflanzenwelt und Rohstoffbildung, Band I. Grundlagen — Kohlebildung — Arbeitsmethoden/Palynologie. Franz Deuticke, Wien.

    Google Scholar 

  • Knox R. B., McConchie C. A. (1986) Structure and function of compound pollen. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Linnean Society Symposium Series 12: 265–282. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto.

    Google Scholar 

  • Kress W. J. (1986) Exineless pollen structure and pollination systems of tropicalHeliconia (Heliconiaceae). In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Linnean Society Symposium Series 12: 329–345. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto.

    Google Scholar 

  • Kronestedt-Robards E., Rowley J. R. (1989) Pollen grain development and tapetal changes inStrelitzia reginae (Strelitziaceae). Amer. J. Botany 76: 856–870.

    Google Scholar 

  • Le Thomas A. (1981) Ultrastructural characters of the pollen grains of african Annonaceae and their significance for the phylogeny of primitive angiosperms (first part). Pollen Spores XXII: 267–342.

    Google Scholar 

  • Linder H. P. (1998) Pollen morphology and wind pollination in Angiosperms. In: Pollen and Spores 1998, Morphology and Biology. An International Conference at The Royal Botanic Gardens Kew, Abstract Book p. 14.

  • Linder H. P., Midgley J. (1996) Anemophilous plants select pollen from their own species from the air. Oecologia 108: 85–87.

    Google Scholar 

  • Lisci M., Cardinali G., Pacini E. (1996) Pollen dispersal and role of pollenkitt inMercurialis annua L. (Euphorbiaceae). Flora 191: 385–391.

    Google Scholar 

  • MacPhail M. K., Partridge A. D., Truswell E. M. (1999) Fossil pollen records of the problematical primitive angiosperm family Lactoridaceae in Australia. Plant Syst. Evol. 214: 199–210.

    Google Scholar 

  • Mahy G., De Sloover J., Jacquemart A.-L. (1998) The generalist pollination system and reproductive success ofCalluna vulgaris in the Upper Ardenne. Can. J. Bot. 76: 1843–1851.

    Google Scholar 

  • Malhó R. (1999) The role of Calcium and associated proteins in tip growth and orientation. In: Cresti M., Cai G., Moscatelli A. S. (eds.) Fertilization in Higher Plants. Molecular and Cytological Aspects. Springer, Heidelberg, pp. 253–270.

    Google Scholar 

  • Márquez J., Seoane-Camba J. A., Suárez-Cervera M. (1997a) Allergenic and antigenic proteins released in the apertural sporoderm during the activation process in grass pollen grains. Sex. Plant Reprod. 10: 269–278.

    Google Scholar 

  • Márquez J., Seoane-Camba J. A., Suárez-Cervera M. (1997b) The role of the intine and cytoplasm in the activation and germination process of Poaceae pollen grains. Grana 36: 328–346.

    Google Scholar 

  • Mayo S. J., Bogner J., Boyce P. C. (1997) The genera of Araceae. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Mejías J. A., Díez M. J. (1993) Palynological and cytological observations in spanishSonchus (Asteraceae). Grana 32: 343–347.

    Google Scholar 

  • Muller J. (1979) Form and function in angiosperm pollen. Ann. Missouri Bot. Garden 66: 593–632.

    Google Scholar 

  • Muller J. (1981) Exine architecture and function in some Lythraceae and Sonneratiaceae. Rev. Palaeobot. Palynol. 35: 93–123.

    Google Scholar 

  • Murphy D. J., Ross J. H. E. (1998) Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components inBrassica napus. Plant J. 13: 1–16.

    Google Scholar 

  • Niklas K. J. (1984) The motion of windborne pollen grains around conifer ovulate cones: implications on wind pollination. Amer. J. Bot. 71: 356–374.

    Google Scholar 

  • Olsson U. (1974) A biometric study of the pollen morphology ofLinaria vulgaris (L.) Miller andL. repens (L.). Miller (Scrophulariaceae) and their hybrid progeny in F1 and F2 generations. Grana 14: 92–99.

    Google Scholar 

  • Osborn J. M., Philbrick C. T. (1994) Comparative pollen structure and pollination biology in the Callitrichaceae. Acta Bot. Gallica 141: 257–266.

    Google Scholar 

  • Osborn J. M., Taylor T. N., Schneider E. L. (1991) Pollen morphology and ultrastructure of the Cabombaceae: correlations with pollination biology. Amer. J. Bot. 78: 1367–1378.

    Google Scholar 

  • Otegui M., Coccucci A. (1999) Flower morphology and biology ofMyrsine laetevirens, structural and evolutionary implications of anemophily in Myrsinaceae. Nordic J. Botany 19: 71–85.

    Google Scholar 

  • Owens J. N., Simpson S. J., Molder M. (1981) Sexual reproduction inPinus contorta I. Pollen development, the pollination mechanism, and early ovule development. Can. J. Bot. 59: 1828–1843.

    Google Scholar 

  • Pacini E. (1997) Tapetum character states: analytical keys for tapetum types and activities. Can. J. Bot. 75: 1448–1459.

    Google Scholar 

  • Pacini E., Bellani L. M. (1986)Lagerstroemia indica L. pollen: form and function. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Linnean Society Symposium Series 12: 347–357. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto.

    Google Scholar 

  • Pacini E., Franchi G. G. (1982) Germination of pollen inside anthers in some non-cleistogamous species. Caryologia 35: 205–215.

    Google Scholar 

  • Pacini E., Franchi G. G. (1996) Some cytological, ecological and evolutionary aspects of pollination. Acta Soc. Bot. Poloniae 65: 11–16.

    Google Scholar 

  • Pacini E., Juniper B. E. (1979a) The ultrastructure of pollen-grain development in the olive (Olea europaea). 1. proteins in the pore. New Phytol. 83: 157–163.

    Google Scholar 

  • Pacini E., Juniper B. E. (1979b) The ultrastructure of pollen-grain development in the olive (Olea europaea). 2. Secretion by the tapetal cells. New Phytol. 83: 165–174.

    Google Scholar 

  • Pacini E., Juniper B. E. (1983) The ultrastructure of the formation and development of the amoeboid tapetum inArum italicum Miller. Protoplasma 117: 116–129.

    Google Scholar 

  • Pacini E., Taylor P. E., Singh M. B., Knox R. B. (1992) Development of plastids in pollen and tapetum of Rye-grass,Lolium perenne L. Ann. Botany 70: 179–188.

    Google Scholar 

  • Philbrick C. T., Osborn J. M. (1994) Exine reduction in underwater floweringCallitriche (Callitrichaceae): Implications for the evolution of hypohydrophily. Rhodora 96: 370–381.

    Google Scholar 

  • Piffanelli P., Ross J. H. E., Murphy D. J. (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex. Plant Reprod. 11: 65–82.

    Google Scholar 

  • Praglowski J., Raj B. (1979) On some pollen morphological terms. Grana 18: 109–113.

    Google Scholar 

  • Radivo P. (1998) Morphologische und ultrastrukturelle Studien zur Pollenentwicklung und zum Narbenbau beiPrimula vulgaris (Primulaceae). Diplomarbeit, Formal- und Naturwissenschaftliche Fakulät, Universität Wien.

  • Rowley J. R. (1990) The fundamental structure of the pollen exine. Plant Syst. Evol. [Suppl.] 5: 13–29.

    Google Scholar 

  • Rowley J. R., Skvarla J. J., Chissoe W. F. (1997) Exine, onciform zone and intine structure inRavenala andPhenakospermum and early wall development inStrelitzia andPhenakospermum (Strelitziaceae) based on aborted microspores. Rev. Palaeobot. Palynol. 98: 293–301.

    Google Scholar 

  • Ruiter R. K., Mettenmeyer T., Van Laarhoven D., Van Eldik G. J., Doughty J., Van Herpen M. M. A., Schrawwen J. A. M., Dickinson H. G., Wullems G. J. (1997) Proteins of the pollen coat ofBrassica oleracea. J. Plant Physiol. 150: 85–91.

    Google Scholar 

  • Runions C. J., Rensing K. H., Takaso T., Owens J. N. (1999) Pollination ofPicea orientalis (Pinaceae): Saccus morphology governs pollen buoyancy. Amer. J. Bot. 86: 190–197.

    Google Scholar 

  • Sampson F. B. (1995) Pollen morphology ofLactoris — a re-examination. Grana 34: 100–107.

    Google Scholar 

  • Sampson F. B., Endress P. K. (1984) Pollen morphology in the Trimeniaceae. Grana 23: 129–137.

    Google Scholar 

  • Skvarla J. J., Raven P. H., Chissoe W. F., Sharp M. (1978) An ultrastructural study of viscin threads in Onagraceae pollen. Pollen Spores 20: 5–143.

    Google Scholar 

  • Stephenson A. G., Doughty J., Dixon S., Elleman C., Hiscock S., Dickinson H. G. (1997) The male determinant of self-incompatibility inBrassica oleracea is located in the pollen coating. Plant J. 12: 1351–1359.

    Google Scholar 

  • Suárez-Cervera M., Marquez J., Molero J., Seoane-Camba J. (1995) Structure of the apertural sporoderm of pollen grains inEuphorbia andChamaesyce (Euphorbiaceae). Plant Syst. Evol. 197: 111–122.

    Google Scholar 

  • Suárez-Cervera M., Seoane-Camba J., Lobreau-Callen D. (1992) Pollen morphology and pollenwall proteins (localization and enzymatic activity) inSesamothamnus lugardii (Pedaliaceae). Plant Syst. Evol. 183: 67–81.

    Google Scholar 

  • Taylor T. N., Levin D. A. (1975) Pollen morphology of Polemoniaceae in relation to systematics and pollination systems: scanning electron microscopy. Grana 15: 91–112.

    Google Scholar 

  • Thanikaimoni G. (1986) Pollen apertures: form and function. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores. Form and Function. Linnean Society Symposium Series 12: 119–136. Academic Press, London Orlando San Diego New York Austin Boston Sydney Tokyo Toronto.

    Google Scholar 

  • Thomson J. D., Stratton D. A. (1985) Flora morphology and cross-pollination inErythronium grandiflorum (Liliaceae). Amer. J. Bot. 72: 433–437.

    Google Scholar 

  • Thomson J. D., Thomson B. A. (1989) Dispersal ofErythronium grandiflorum pollen by bumblebees: implication for gene flow and reproductive success. Evolution 43: 657–661.

    Google Scholar 

  • Tilney P. M., Van Wyk A. E. (1997) Pollen morphology ofCanthium, Keetia andPsydrax (Rubiaceae: Vanguerieae) in southern Africa. Grana 36: 249–260.

    Google Scholar 

  • Tomlinson R. B. (1994) Functional morphology of saccate pollen in conifers with special reference to Podocarpaceae. Int. J. Plant Sci. 155: 699–715.

    Google Scholar 

  • Traverse A. (1988) Paleopalynology. Unwin Hyman, Boston London Sydney Wellington.

    Google Scholar 

  • Tsou C.-H. (1997) Embryology of the Theaceae — anther and ovule development ofCamellia, Franklinia, andSchima. Amer. J. Bot. 84: 369–381.

    Google Scholar 

  • Ubera Jiménez J. L., Hidalgo Fernandéz P., Schlag M. G., Hesse M. (1996) Pollen and tapetum development in male fertileRosmarinus officinalis L. (Lamiaceae). Grana 34: 305–316.

    Google Scholar 

  • Van der Ham R. W. J. M., Hetterscheid W. L. A., van Heuven B. J. (1998) Notes on the genusAmorphophallus (Araceae). 8. Pollen morphology ofAmorphophallus andPseudodracontium. Rev. Palaeobot. Palynol. 103: 95–142.

    Google Scholar 

  • Ward J. V., Doyle J. A. (1994) Ultrastructure and relationships of mid-cretaceous polyforate and triporate pollen from northern Gondwana. In: Kurmann M. H., Doyle J. A. (eds.) Ultrastructure of fossil spores and pollen. Royal Botanic Gardens, Kew, pp. 161–172.

    Google Scholar 

  • Weber M. (1996a) Apertural chambers inGeranium: Development and ultrastructure. Sex. Plant Reprod. 9: 102–106.

    Google Scholar 

  • Weber M. (1996b) The existence of a special exine coating inGeranium robertianum pollen. Int. J. Plant Sci. 157: 195–202.

    Google Scholar 

  • Weber M., Halbritter H., Hesse M. (1998) The spiny pollen wall inSauromatum (Araceae) — with special reference to the endexine. Int. J. Plant Sci. 159: 744–749.

    Google Scholar 

  • Weber M., Halbritter H., Hesse M. (1999) The basic pollen wall types in Araceae. Int. J. Plant Sci. 160: 415–423.

    Google Scholar 

  • Weber M., Igersheim A. (1994) “Pollen buds” inOphiorrhiza (Rubiaceae) and their role in pollenkitt release. Bot. Acta 107: 257–262.

    Google Scholar 

  • Willemse M. T. M. (1999) Pollen coat signals with respect to pistil activation and ovule penetration inGasteria verrucosa (Mill.) H. Duval. In: Cresti M., Cai G., Moscatelli A. S. (eds.) Fertilization in Higher Plants. Molecular and Cytological Aspects. Springer, Heidelberg, pp. 145–156.

    Google Scholar 

  • Willemstein S. C. (1987) An evolutionary basis for pollination ecology. Leiden University Press, Leiden.

    Google Scholar 

  • Wu S. S. H., Platt K. A., Ratnayake C., Wang T.-W., Ting J. T. L., Huang A. H. C. (1997) Isolation and characterization of neutral-lipidcontaining organelles and globuli-filled plastids fromBrassica napus tapetum. Proceedings of the National Academy of Sciences of the United States of America 94: 12711–12716.

    Google Scholar 

  • Wyatt R. (1981) Ant-pollination of the granite outcrop endemicDiamorpha smallii (Crassulaceae). Amer. J. Bot. 68: 1212–1217.

    Google Scholar 

  • Zetter R., Hesse M. (1996) The morphology of pollen tetrads and viscin threads in some Tertiary,Rhododendron-like Ericaceae. Grana 35: 285–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesse, M. Pollen wall stratification and pollination. Pl Syst Evol 222, 1–17 (2000). https://doi.org/10.1007/BF00984093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984093

Key words

Navigation