Plant Systematics and Evolution

, Volume 196, Issue 3–4, pp 141–151 | Cite as

The pollinium ofLoroglossum hircinum (Orchidaceae) between pollination and pollen tube emission

  • T. Pandolfi
  • E. Pacini


The structure of the massulae composing the pollinium ofLoroglossum hircinum was studied before pollination and 12 and 24 hours afterwards. The grains are grouped in tetrads closely packed in massulae. The exine is only present on the outside of the massulae. The intine consists of two layers: a compact layer surrounding the pollen grain and a looser layer surrounding the pollen grain and a looser layer surrounding the tetrad. Twelve hours after pollination, pollen volume and the space between the tetrads increase due to vacuolization. Twenty-four hours after pollination, pollen volume and tetrad spacing are higher due to vacuolization and some grains have emitted pollen tubes. Pollen growth due to vacuole formation, and the absence of common walls between adjacent tetrads lead to crumbling of the massulae. The mature pollen grain does not have apertures: the site of pollen tube emission is determined after pollination. The first grains to germinate are those in the centre of the massula. The vegetative cell nucleus is the first to enter the pollen tube; the generative cell elongates and undergoes the second haploid mitosis shortly after entering the pollen tube.

Key words

Orchidaceae Loroglossum hircinum Compound pollen pollinium pollen tubes generative cell evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, R. C., Lemmon, B. E., 1984: Pollen mitosis in the slipper orchidCypripedium fasciculatum. — Sex. Pl. Reprod.7: 87–94.Google Scholar
  2. Burns-Balogh, P., 1983: A theory on the evolution of the exine inOrchidaceae. — Amer. J. Bot.70: 1304–1312.Google Scholar
  3. Clifford, S. G., Owens, S. J., 1988: Post-pollination phenomena and embryo development in theOncidiinae (Orchidaceae). — InCresti, M., Gori, P., Pacini, E., (Eds): Sexual reproduction in higher plants, pp. 407–412. — Berlin: Springer.Google Scholar
  4. Cocucci, A., 1988: Ultrastructural aspects ofEpidendrum male gametogenesis. — InCresti, M., Gori, P., Pacini, E., (Eds): Sexual reproduction in higher plants, pp. 251–256. — Berlin: Springer.Google Scholar
  5. —, 1969: Orchid embryology: pollen tetrads ofEpidendrum scutella in the anther and on stigma. — Planta84: 215–229.Google Scholar
  6. Coleman, A. W., Goff, L. J., 1985: Applications of fluorochromes to pollen biology. 1. Mithramycin-8-4.6-diamino-2Phenylindole (DAPI) as vital stain for quantitation of nuclear DNA. — Stain Technol.60: 145–154.Google Scholar
  7. Dafni, A., 1987: Pollination inOrchis and related genera: evolution from reward to deception. — InArditti, A., (Ed.): Orchid biology: reviews and perspectives4, pp. 80–104. — Ithaca: Comstoch.Google Scholar
  8. Den Nijs, A. P. M., Miotay, P., 1991: Fruit and seed set in the cucumber (Cucumis sativus L.). — Gartenbauwissenschaft56: 46–49.Google Scholar
  9. Fitzgerald, M. A., Calder, D. M., Knox, R. B., 1993: Character states of development and initiation of cohesion between compound pollen grains ofAcacia paradoxa. — Ann. Bot.71: 51–59.Google Scholar
  10. Gerlach, G., Schill, R., 1991: Composition of orchids scents attractingEuglossinae bees. — Bot. Acta104: 379–391.Google Scholar
  11. Heslop-Harrison, J., 1979: An interpretation of the hydrodynamics of pollen. — Amer. J. Bot.66: 737–743.Google Scholar
  12. —, 1987: Pollen germination and pollen-tube growth. — Int. Rev. Cytol.107: 1–78.Google Scholar
  13. —, 1986: The comportment of the vegetative nucleus and generative cell in the pollen and pollen tubes ofHelleborus foetidus L. — Ann. Bot.58: 1–12.Google Scholar
  14. Heslop-Harrison, Y., 1977: The pollen-stigma interaction. Pollen tube penetration inCrocus. — Ann. Bot.41: 221–225.Google Scholar
  15. Hesse, M., 1979: Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomo- und anemophilen Angiospermen:Polygonaceae. — Flora168: 548–557.Google Scholar
  16. —, 1983: The fine structure of the pollen wall inStrelitzia reginae (Musaceae). — Pl. Syst. Evol.141: 285–298.Google Scholar
  17. Johri, B. M., Ambegaokar, K. B., Srivastava, P. S., 1992: Comparative embryology of angiosperms. — Berlin: Springer.Google Scholar
  18. Knox, R. B., 1984: The pollen grain. — InJohri, B. M., (Ed.): Embryology of angiosperms, pp. 197–271. — Berlin: Springer.Google Scholar
  19. —, 1986: Structure and function of compound pollen. — InBlackmore, S., Ferguson, I. K., (Eds): Pollen and spores: form and function, pp. 265–285. — London: Academic Press.Google Scholar
  20. Le Deunff, E., Sauton, A., Dumas, C., 1993: Effect of ovular receptivity on seed set and fruit development in cucumber (Cucumis sativus L.). — Sex. Pl. Reprod.6: 139–146.Google Scholar
  21. Lisci, M., Tanda, C., Pacini, E., 1994: Pollination ecophysiology ofMercurialis annua L. (Euphorbiaceae), an anemophilous species flowering all year round. — Ann. Bot.74: 125–135.Google Scholar
  22. Maheshwari, P., 1950: An introduction to the embryology of angiosperms. — New York: McGraw-Hill.Google Scholar
  23. Muller, J., 1979: Form and function in angiosperm pollen. — Ann. Missouri Bot. Gard.66: 593–632.Google Scholar
  24. Nepi, M., Pacini, E., 1993: Pollination, pollen viability and pistil receptivity inCucurbita pepo. — Ann. Bot.72: 527–536.Google Scholar
  25. O'Brien, T. P., McCully, M. E., 1981: The study of plant structure-principles and selected methods. — Melbourne: Termarcarphy Pty.Google Scholar
  26. Ottaviano, E., Mulcahy, D. L., 1989: Genetics of angiosperm pollen. — Adv. Gen.26: 1–64.Google Scholar
  27. Pacini, E., 1994: Cell biology of anther and pollen development. — InWilliams, E. G., Clarke, A. E., Knox, R. B., (Eds): Genetic control of self-incompatibility and reproductive development in flowering plants, pp. 289–308. — Amsterdam: Kluwer.Google Scholar
  28. —, 1993: Role of the tapetum in pollen and spore dispersal. — InHesse, M., Pacini, E., Willemse, M., (Eds): The tapetum: cytology, function, and evolution. — Pl. Syst. Evol., Suppl.7: 1–11.Google Scholar
  29. —, 1978: The reproductive calendar ofLycopersicum peruvianum Mill. — Bull. Soc. Bot. France (Actualités Botaniques)175: 295–299.Google Scholar
  30. Pandolfi, T., Calder, M., Pacini, E., 1993: Ontogenesis of monad pollen inPterostylis plumosa (Orchidaceae, Neottioideae). — Pl. Syst. Evol.186: 175–185.Google Scholar
  31. Pearse, A. G. E., 1968: Histochemistry: theoretical and applied1. — London: Churchill.Google Scholar
  32. Schill, R., Dannenbaum, C., Neyer, P., 1992: Quantitative Untersuchungen an Orchideenpollinien. — Bot. Jahrb. Syst.114: 153–171.Google Scholar
  33. Schlag, M., Hesse, M., 1992: The formation of the generative cell inPolystachia pubescens (Orchidaceae). — Sex. Pl. Reprod.5: 131–137.Google Scholar
  34. Wolter, M., Schill, R., 1985: On acetolysis resistant structures in theOrchidaceae—why fossil record of orchid pollen is so rare. — Grana24: 139–143.Google Scholar
  35. —, 1986: Ontogenie von Pollen, Massulae und Pollinien bei den Orchideen. — Trop. Subtrop. Pflanzenwelt56: 1–93.Google Scholar
  36. Yeung, E. C., 1987: Development of pollen and accessory structures in orchids. — InArditti, J., (Ed.): Orchid biology4, pp. 193–226. — Ithaca: Cornell University Press.Google Scholar
  37. Zavada, M. S., 1983: Comparative morphology and monocot pollen and evolutionary trends of apertures and wall structures. — Bot. Rev.49: 331–379.Google Scholar
  38. Zee, S. Y., Siu, I. H. P., 1990: Studies on the ontogeny of the pollinium of a massulate orchid (Peristylus spiranthes). — Rev. Palaeobot. Palynol.64: 159–164.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • T. Pandolfi
    • 1
  • E. Pacini
    • 1
  1. 1.Dept. of Environmental BiologyUniversity of SienaSienaItaly

Personalised recommendations