Advertisement

Planta

, Volume 161, Issue 3, pp 255–260 | Cite as

Carnitine long-chain acyltransferase and oxidation of palmitate, palmitoyl coenzyme A and palmitoylcarnitine by pea mitochondria preparations

  • Clifford Wood
  • M. Noh Hj Jalil
  • Ian McLaren
  • Bob C. S. Yong
  • Azis Ariffin
  • Philip H. McNeil
  • Norma Burgess
  • David R. Thomas
Article

Abstract

Palmitoylcarnitine was oxidised by pea mitochondria.l-carnitine was an essential addition for the oxidation of palmitate or palmitoylCoA. When palmitate was sole substrate, ATP and Mg2+ were also essential additives for maximum oxidation. Additions of CoA inhibited the oxidation of palmitate. It was shown that CoA was acting as a competitive inhibitor of the carnitine-stimulated O2 uptake. It is suggested that palmitoylacarnitine and carnitine passed through the mitochondrial barrier with ease but palmitoylCoA and CoA did not. The presence of carnitine long-chain acyl (palmitoyl)transferase (EC 2.3.1.21) in pea-cotyledon mitochondria was shown. This enzyme may play a role in the transport of long-chain acyl groups through membrane barriers.

Key words

Carnitine Carnitine long-chain acyl (palmitoyl)transferase Mitochondrion Palmitoyl group oxidation Palmitoylcarnitine Pisum (fatty acid oxidation) 

Abbreviation

Tris

2-amino-2-(hydroxymethyl)-1,3-propanediol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariffin, A., McNeil, P.H., Cooke, R.J., Wood, C., Thomas D.R. (1982) Carnitine content of greening barley leaves. Phytochemistry21, 1431–1432Google Scholar
  2. Barron, E.J., Stumpf, P.K. (1962) Fat metabolism in higher plants. XIX. Biosynthesis of triglycerides by avocado mesocarp enzymes. Biochim. Biophys. Acta60, 329–337Google Scholar
  3. Bonner, W.D., Jr. (1973) Mitochondria and plant respiration. In: Phytochemistry, vol. III, pp. 221–261, Miller, L.P., ed. Van Nostrand Reinhold, New YorkGoogle Scholar
  4. Cederblad, G., Lindstedt, S. (1972) Method for the determination of carnitine in the picomole range. Clin. Chim. Acta27, 235–243Google Scholar
  5. Chance, B. (1959) Quantitative aspects of the control of oxygen utilization. In: Ciba Foundation Symposium on Regulation of Cell Metabolism, pp. 91–129. Wolstenholme, G.E.W., O'Conner, C.M. eds. Churchill, LondonGoogle Scholar
  6. Chance, B., Williams, G.R. (1956) The respiratory chain and oxidative phosphorylation. Adv. Enzymol.17, 65–129Google Scholar
  7. Farstad, M., Bremer, J., Norum, K.R. (1967) Long-chain acyl-CoA synthetase in rat liver. A new assay procedure for the enzyme, and studies on its intracellular localization. Biochim. Biophys. Acta132, 492–502Google Scholar
  8. Fraenkel, G. (1951) Effect and distribution of vitamin BT. Arch. Biochem. Biophys.34, 457–468Google Scholar
  9. Fraenkel, G. (1953) The distribution of vitamin BT (carnitine). Biol. Bull. Woods Hole (Mass.)104, 359–371Google Scholar
  10. Frenkel, R.A., McGarry, J.D. (1980) Conference on Carnitine Biosynthesis, Metabolism and Functions, University of Texas at Dallas, 1979, Frenkel, R.A., McGarry, J.D., eds. Academic Press, New YorkGoogle Scholar
  11. Fritz, I.B. (1963) Carnitine and its role in fatty acid metabolism. Adv. Lipid. Res.1, 285–334Google Scholar
  12. Fritz, I.B., Schultz, S.K., Srere, P.A. (1963) Properties of partially purified carnitine acetyltransferase. J. Biol. Chem.238, 2509–2517Google Scholar
  13. Fritz, I.B., Yue, K.T.N. (1963) Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalitic increase of fatty acid oxidation induced by carnitine. J. Lipid Res.4, 279–288Google Scholar
  14. Greville, G.D., Tubbs, P.K. (1968) The catabolism of long chain fatty acids in mammalian tissues. In: Essays in biochemistry, vol. 4, pp. 155–212, Campbell, P.N., Greville, G.D., eds. Academic Press, LondonGoogle Scholar
  15. Hvistendahl, G., Undheim, K., Bremer, J. (1970) Mass spectrometry of onium compounds. II. Carnitine and O-acyl derivatives. Org. Mass Spectrom.3, 1433–1438Google Scholar
  16. Jackson, C., Dench, J.E., Hall, D.O., Moore, A.L. (1979) Separation of mitochondria from contaminating subcellular structures utilizing silica sol gradient centrifugation. Plant Physiol.64, 150–153Google Scholar
  17. Lowry, O.H., Roseborough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275Google Scholar
  18. McNeil, P.H., Thomas, D.R. (1975) Carnitine content of pea seedling cotyledons. Phytochemistry14, 2335–2336Google Scholar
  19. McNeil, P.H., Thomas, D.R. (1976) The effect of carnitine on palmitate oxidation by pea cotyledon mitochondria. J. Exp. Bot.27, 1163–1180Google Scholar
  20. Mettler, I.J., Beevers, H. (1980) Oxidation of NADH in glyoxisomes by a malate-aspartate shuttle. Plant Physiol.66, 555–560Google Scholar
  21. Pande, S.V. (1975) A mitochondrial carnitine acylcarnitine translocase system. Proc. Natl. Acad. Sci. USA72, 883–887Google Scholar
  22. Pande, S.V., Mead, J.F. (1968) Long-chain fatty acid activation in subcellular preparations from rat liver. J. Biol. Chem.243, 352–361Google Scholar
  23. Pande, S.V., Parvin, R. (1976) Characterisation of carnitine acylcarnitine translocase system of heart mitochondria. J. Biol. Chem.251, 6683–6691Google Scholar
  24. Panter, R.A. (1971) Role of carnitine in β-oxidation by higher plants. Diss. Abstr. Int. B32, 1998Google Scholar
  25. Panter, R.A., Mudd, J.B. (1969) Carnitine levels in some higher plants. FEBS Lett.5, 169–170Google Scholar
  26. Panter, R.A., Mudd, J.B. (1973) Some aspects of carnitine metabolism in Avocado. Biochem. J.134, 655–658Google Scholar
  27. Pharmacia Percoll Manual (1977) Pharmacia Fine Chemicals, Uppsala, SwedenGoogle Scholar
  28. Ramsay, R.R. (1978) The role of carnitine, the carnitine acyltransferase and the carnitine-exchange system. Biochem. Soc. Trans.6, 72–76Google Scholar
  29. Ramsay, R.R., Tubbs, P.K. (1975) Mechanism of fatty acid uptake by plant mitochondria. Acylcarnitine-carnitine exchange. FEBS Lett.54, 21–25Google Scholar
  30. Ramsay, R.R., Tubbs, P.K. (1976) The effect of temperature and some inhibitors on the carnitine exchange system of heart mitochondria. Eur. J. Biochem.69, 299–303Google Scholar
  31. Roughan, P.G., Slack, C.R. (1977) Long-chain acyl-coenzyme A synthetase activity of spinach chloroplasts is concentrated in the envelope. Biochem. J.162, 457–459Google Scholar
  32. Stumpf, P.K. (1980) Biosynthesis of saturated and unsaturated fatty acids. In: The Biochemistry of plants, vol. 4: Lipids: structure and function, pp. 177–204, Stumpf, P.K., Conn, E.E., eds. Academic Press, New YorkGoogle Scholar
  33. Thomas, D.R., Ariffin, A., Noh Hj Jalil, M., Yong, B.C.S., Cooke, R.J., Wood, C. (1981) Effect of carnitine on greening barley leaves. Phytochemistry20, 1241–1244Google Scholar
  34. Thomas, D.R., McNeil, P.H. (1976) The effect of carnitine on the oxidation of saturated fatty acids by pea cotyledon mitochondria. Planta132, 61–63Google Scholar
  35. Thomas, D.R., Noh Hj Jalil, M., Ariffin, A., Cooke, R.J., McLaren, I., Yong, B.C.S., Wood, C. (1983) The synthesis of short-and-long-chain acylcarnitine by etio-chloroplasts of greening barley leaves. Planta158, 259–263Google Scholar
  36. Thomas, D.R., Noh Hj Jalil, M., Cooke, R.J., Yong, B.C.S., Ariffin, A., McNeil, P.H., Wood, C. (1982) The synthesis of palmitoylcarnitine by etio-chloroplasts of greening barley leaves. Planta154, 60–65Google Scholar
  37. Thomas, D.R., Stobart, A.K. (1970) Lipids of tissue cultures ofKalanchoë crenata. J. Exp. Bot.21, 274–285Google Scholar
  38. Thomas, D.R., Wood, C. (1982) Oxidation of acetate, acetyl-CoA and acetylcarnitine by pea mitochondria. Planta154, 145–149Google Scholar
  39. Watson, J.A., Lowenstein, J.M. (1970) Citrate and the conversion of carbohydrate into fat. Fatty acid synthesis by a combination of cytoplasm and mitochondria. J. Biol. Chem.22, 5993–6002Google Scholar
  40. Wood, C., Noh Hj Jalil, M., Ariffin, A., Yong, B.S.C., Thomas, D.R. (1983) Carnitine short-chain acyltransferase in pea mitochondria. Planta158, 175–178Google Scholar
  41. Yamada, M., Stumpf, P.K. (1965) Fat metabolism in higher plants. XXIV. A soluble-oxidative system from germinating seeds ofRicinus Communis. Plant Physiol.40, 653–658Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Clifford Wood
    • 1
  • M. Noh Hj Jalil
    • 1
  • Ian McLaren
    • 1
  • Bob C. S. Yong
    • 1
  • Azis Ariffin
    • 1
  • Philip H. McNeil
    • 1
  • Norma Burgess
    • 1
  • David R. Thomas
    • 1
  1. 1.Department of Plant BiologyNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations