, Volume 161, Issue 3, pp 193–200 | Cite as

Calcium-oxalate crystals and crystal cells in determinate root nodules of legumes

  • J. M. Sutherland
  • J. I. Sprent


Early reports of the presence of calciumoxalate crystals in the cortices ofPhaseolus vulgaris root nodules have been confirmed. Crystals were found in all six genera examined (Cajanus, Desmodium, Glycine, Lespedeza, Phaseolus, Vigna) that have determinate nodules and export ureides. They were absent from six genera examined that have indeterminate nodules and export amides. The possible physiological significance of these structures is discussed.

Key words

Calcium oxalate (root nodules) Root nodule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dwarte, D., Ashford, A.E. (1982) The chemistry and microstructure of protein bodies in celery endosperm. Bot. Gaz. (Chicago)143, 164–175Google Scholar
  2. Espelie, K.E., Wattendorff, J., Kolattukudy, P.E. (1982) Composition and ultrastructure of the suberized cell wall of isolated crystal idioblasts fromAgave americana L. leaves. Planta155, 166–175Google Scholar
  3. Frank, E. (1975) On the formation of the pattern of crystal idioblasts inCanavalia ensiformis D.C. VII. Calcium and oxalate content on the leaves in dependence of calcium nutrition. Z. Pflanzenphysiol.77, 80–85Google Scholar
  4. Feigl, F., Frehden, D. (1935) Nachweis organischer Verbindungen mit Hilfe von Tüpfelreaktion. X. Mikrochemie18, 272–276Google Scholar
  5. Fraser, H.L. (1942) The occurrence of endodermis in leguminous root nodules and its effect upon nodule formation. Proc. R. Soc. Edinburgh Sect. B61, 328–343Google Scholar
  6. Franceschi, V.R., Horner, H.T. (1980) Calcium oxalate crystals in plants. Bot. Rev.46, 361–427Google Scholar
  7. Harrison-Murray, R.S., Clarkson, D.T. (1973) Relationships between structural development and absorption of ions by the root system ofCucurbita pepo. Planta114, 1–16Google Scholar
  8. Hodgkinson, A. (1977) Oxalic acid in biology and medicine. Academic Press, London New YorkGoogle Scholar
  9. Horner, H.T., Zindler-Frank, E. (1982a) Calcium oxalate crystals and crystal cells in the leaves ofRhynchosia caribaea (Leguminosae: Papilionoidae). Protoplasma111, 10–18Google Scholar
  10. Horner, H.T., Zindler-Frank, E. (1982b) Histochemical, spectroscopic, and X-ray diffraction identifications of the two hydration forms of calcium oxalate crystals in three legumes andBegonia. Can. J. Bot.60, 1021–1027Google Scholar
  11. Johnson, G.V., Evans, H.J., Ching, T.M. (1966) Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes. Plant Physiol.41, 1330–1336Google Scholar
  12. Layzell, D.B., Rainbird, R.M., Atkins, C.A., Pate, J.S. (1979) Economy of photosynthate use in nitrogen-fixing legume nodules. Observations on two contrasting symbioses. Plant Physiol.64, 888–891Google Scholar
  13. Luthra, Y.P., Sheoran, I.S., Rao, A.S., Singh, R. (1983) Ontogenetic changes in the level of ureides and enzymes in their metabolism in various plant parts of pigeonpeaCajanus cajan. J. Exp. Bot.34, 1358–1370Google Scholar
  14. Matsumoto, T., Blevins, D.G., Randall, D.D. (1982) Soybean leaf ureide metabolism: allantoicase ureidogylcolase and urease (Abstr.). Plant Physiol.69, Suppl., 117Google Scholar
  15. O'Brien, T.P., McCully, M.E. (1981) The study of plant structure. Principles and selected methods. Termarcarphi Pty. Melbourne, AustraliaGoogle Scholar
  16. Polhill, R.M., Raven, P.H. (eds) (1981) Advances in legume systematics. Royal Botanic Gardens, Kew, UKGoogle Scholar
  17. Rawsthorne, S., Minchin, F.R., Summerfield, R.J., Cockson, C., Coombs, J. (1980) Carbon and nitrogen metabolism in legume root nodules. Phytochemistry19, 341–355Google Scholar
  18. Raven, J.A., Griffiths, H., Glidewell, S.M., Preston, T. (1982) The mechanism of oxalate biosynthesis in higher plants: investigations with the stable isotopes18O and13C. Proc. R. Soc. London Ser. B216, 87–101Google Scholar
  19. Scott, M.G., Peterson, R.L. (1979) The root endodermis inRanunculus acris 1. Structure and ontogeny. Can. J. Bot.57, 1040–1062Google Scholar
  20. Sinclair, T.M., Goudriaan, J. (1981) Physical and morphological constraints on transport in nodules. Plant. Physiol.67, 143–145Google Scholar
  21. Spratt, E.R. (1919) A comparative account of the root nodules of the Leguminosae. Ann. Bot. (London)33, 181–191Google Scholar
  22. Sprent, J.I. (1980) Root nodule anatomy, type of export product and evolutionary origin in some Leguminosae. Plant Cell Environ.3, 35–43Google Scholar
  23. Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43Google Scholar
  24. Sutherland, J.M. (1976) Observations on the development of the endodermis inZea mays roots. M.Sc. thesis, Carlton University, OttawaGoogle Scholar
  25. Thomas, R.J., Schrader, L.E. (1981) Ureide metabolism in higher plants. Phytochemistry20, 361–371Google Scholar
  26. Vogels, G.D., Van der Drift, C. (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev.40, 403–468Google Scholar
  27. Wattendorff, J. (1976) Ultrastructure of the suberized styloid crystal cells inAgave leaves. Planta128, 163–165Google Scholar
  28. Wilson, P.W., Umbreit, W.W. (1937) Fixation and transfer of nitrogen in the soybean. Zentralbl. Bakteriol. Parasitenkd. Infektionsk. Hyg. Abt. 296, 402–411Google Scholar
  29. Yasue, T. (1969) Histochemical identification of calcium oxalate. Acta Histochem. Cytochem.2, 83–95Google Scholar
  30. Yousef, A.N. (1982) Effects of salt stress on symbiotic nitrogen fixation inVicia faba (L.). Ph.D. thesis, University of Dundee, UKGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. M. Sutherland
    • 1
  • J. I. Sprent
    • 1
  1. 1.Department of Biological SciencesUniversity of DundeeDundeeUK

Personalised recommendations