Plant Systematics and Evolution

, Volume 205, Issue 1–2, pp 73–84 | Cite as

Enzyme polymorphism inPreissia quadrata (Hepaticae, Marchantiaceae)

  • Marie-Catherine Boisselier-Dubayle
  • Helene Bischler
Article

Abstract

Preissia quadrata has a high habitat specificity and a reproductive system including frequent sexual reproduction and absence of specialized asexual propagules. Fertilization is aquatic. Colonies collected in Europe, Asia, eastern and western Canada show the species to be polymorphic at the eleven isozyme loci studied. Most often, thalli of the same colony appeared genetically identical. Partitioning of genetic variation was among rather than within colonies, suggesting a clonal structure of the colonies and a species structure consisting of a series of small populations reproductively isolated from each other. Little genetic exchange between colonies growing nearby was present, but the species does not appear to consist of regionally circumscribed genetically cohesive entities. Some European and Canadian colonies had identical electrophoretic patterns. The problem of understanding the phenomena holding liverwort species together, both morphologically and genetically, remains an open question. The genetic structure of the species might be due to its past history. It might have had a continuous distribution in the northern part of the Northern Hemisphere. If so, little subsequent genetic diversification, perhaps linked to its haploid-dominant life cycle, must be supposed.

Key words

Bryophytes Hepaticae Marchantiales Preissia quadrata Habitat species structure reproductive system isozymes genetic variability gene flow population structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnell, W. H., 1928: Mossor a levermossor — InHolmberg, O. R., (Ed.): Skandianivens Flora. II. — Stockholm: Norstedt & Söner.Google Scholar
  2. Boisselier-Dubayle, M. C., de Chaldee, M., Guerin, L., Lambourdiere, J., Bischler, H., 1995a: Genetic variability in western EuropeanLunularia. — Fragm. Florist. Geobot.40: 379–391.Google Scholar
  3. —, Jubier, M. F., Lejeune, B., Bischler, H., 1995b: Genetic variability in three subspecies ofMarchantia polymorpha: isozymes, RFLP and RAPD markers. — Taxon44: 363–376.Google Scholar
  4. Dewey, R. M., 1989: Genetic variation in the liverwortRiccia dictyospora (Ricciaceae, Hepaticopsida). — Syst. Bot.14: 155–167.Google Scholar
  5. Grolle, R., 1975: Miscellanea hepaticologica 151–160. — Lindbergia3: 47–56.Google Scholar
  6. —, 1980: Miscellanea hepaticologica 201–210. — J. Bryol.11: 325–334.Google Scholar
  7. Grõrffy, I., 1947: De gametangiophorum connatione. — Rev. Bryol. Lichénol.16: 1–3.Google Scholar
  8. —, 1948: Heredity and perturbed thallus of hepatic. — On the disturbed thalli of theChomocarpon commutatus of Austria. — Rev. Bryol. Lichénol.17: 119–125.Google Scholar
  9. Hamrick, J. L., Godt, M. J. W., Sherman-Broyles, S. L., 1992: Factors influencing levels of genetic diversity in woody plant species. — New Forests6: 95–124.Google Scholar
  10. Hoey, M., Parks, C. R., 1991: Isozyme divergence between eastern Asian, North American, and Turkish species ofLiquidambar (Hamamelidaceae). — Amer. J. Bot.78: 938–947.Google Scholar
  11. Jensen, C., 1915: Danmarks mossor. — Kobenhavn: Gyldendalske Boghandel.Google Scholar
  12. Nei, M., 1972: Genetic distance between populations. — Amer. Naturalist106: 283–292.Google Scholar
  13. —, 1973: Analysis of gene diversity in subdivided populations. — Proc. Natl. Acad. Sci. USA70: 3321–3323.Google Scholar
  14. —, 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics89: 583–590.Google Scholar
  15. Odrzykoski, I. J., Szweykowski, J., 1991: Genetic differentiation without concordant morphological divergence in the thallose liverwortConocephalum conicum. — Pl. Syst. Evol.178: 135–151.Google Scholar
  16. —, Stoneburner, A., Wyatt, R., 1993: Genetic variation in the East Asian endemic mossPlagiomnium tezukae. — J. Hattori Bot. Lab.73: 139–146.Google Scholar
  17. Schuster, R. M., 1985: Some new taxa ofHepaticae. — Phytologia57: 408–414.Google Scholar
  18. —, 1992: TheHepaticae andAnthocerotae of North America. 5, 6. — Chicago: Field Museum of Natural History.Google Scholar
  19. Shaw, A. J., 1995: Genetic biogeography of the rare “copper moss”,Scopelophila cataractae (Pottiaceae). — Pl. Syst. Evol.197: 43–58.Google Scholar
  20. —, Schneider, R., 1995: Genetic biogeography of the rare “copper moss”,Mielichhoferia elongata (Bryaceae). — Amer. J. Bot.82: 8–17.Google Scholar
  21. Stoneburner, A., Wyatt, R., Odrzykoski, I. J., 1991: Applications of enzyme electrophoresis to Bryophyte systematics and population biology. — Advances Bryol.4: 1–27.Google Scholar
  22. Swofford, D. L., Selander, R. B., 1981: BIOSYS-1; a fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. — J. Heredity72: 281–283.Google Scholar
  23. Wyatt, R., 1994: Population genetics of bryophytes in relation to their reproductive biology. — J. Hattori Bot. Lab.76: 147–157.Google Scholar
  24. —, Stoneburner, A., Odrzykoski, I. J., 1989: Bryophyte isoenzymes: systematic and evolutionary implications. — InSoltis, D. E., Soltis, P. S., (Eds): Isozymes in plant biology, pp. 221–240. — Portland, Oregon: Dioscorides Press.Google Scholar
  25. —, Odrzykoski, I. J., Stoneburner, A., 1993: Isozyme evidence proves that the mossRhizomnium pseudopunctatum is an allopolyploid ofR. gracile ×R. magnifolium. — Mem. Torrey Bot. Club25: 21–35.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Marie-Catherine Boisselier-Dubayle
    • 1
  • Helene Bischler
    • 1
  1. 1.CNRS-GDR 1005 ‘Systématique Moléculaire’, Laboratoire de CryptogamieMuséum National d'Histoire NaturelleParisFrance

Personalised recommendations