Advertisement

Astrophysics and Space Science

, Volume 214, Issue 1–2, pp 3–17 | Cite as

Magnetospheric plasma interactions

  • Carl-Gunne Fälthammar
Article

Abstract

The Earth's magnetosphere (including the ionosphere) is our nearest cosmical plasma system and the only one accessible to mankind for extensive empirical study by in situ measurements. As virtually all matter in the universe is in the plasma state, the magnetosphere provides an invaluable sample of cosmical plasma from which we can learn to better understand the behaviour of matter in this state, which is so much more complex than that of unionized matter.

It is therefore fortunate that the magnetosphere contains a wide range of different plasma populations, which vary in density over more than six powers of ten and even more in equivalent temperature. Still more important is the fact that its dual interaction with the solar wind above and the atmosphere below make the magnetosphere the site of a large number of plasma phenomena that are of fundamental interest in plasma physics as well as in astrophysics and cosmology.

The interaction of the rapidly streaming solar wind plasma with the magnetosphere feeds energy and momentum, as well as matter, into the magnetosphere. Injection from the solar wind is a source of plasma populations in the outer magnetosphere, although much less dominating than previously thought. We now know that the Earth's own atmosphere is the ultimate source of much of the plasma in large regions of the magnetosphere. The input of energy and momentum drives large scale convection of magnetospheric plasma and establishes a magnetospheric electric field and large scale electric current systems that carry millions of ampère between the ionosphere and outer space. These electric fields and currents play a crucial role in generating one of the most spectacular among natural phenomena, the aurora, as well as magnetic storms that can disturb man-made systems on ground and in orbit. The remarkable capability of accelerating charged particles, which is so typical of cosmical plasmas, is well represented in the magnetosphere, where mechanisms of such acceleration can be studied in detail. In situ measurements in the magnetosphere have revealed an unexpected tendency of cosmical plasmas to form cellular structure, and shown that the magnetospheric plasma sustains previously unexpected, and still not fully explained, chemical separation mechanisms, which are likely to operate in other cosmical plasmas as well.

Keywords

Solar Wind Magnetic Storm Solar Wind Plasma Plasma Interaction Magnetospheric Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R.D.: 1967,Phys. Rev. Letters 18, 369–372.Google Scholar
  2. Alfvén, H.: 1942,Stockholms Observatoriums Annaler 1, 14, No. 2.Google Scholar
  3. Alfvén, H.: 1958,Tellus 10, 104–116.Google Scholar
  4. Alfvén, H.: 1977, in: G. Ekspong and S. Nilsson (eds.),Proc. Third European Symp. at Wennergren Center, Stockholm, July 9–13, 1976, Pergamon Press, Oxford.Google Scholar
  5. Alfvén, H.: 1978,Astrophys. Space Sci. 54, 279–292.Google Scholar
  6. Alfvén, H.: 1979,Astrophys. Space Sci. 64, 401.Google Scholar
  7. Alfvén, H.: 1981,Cosmic Plasma, D. Reidel Publ. Co., Dordrecht.Google Scholar
  8. Alfvén, H.: 1984,Space Sci. Rev. 39, 65–90.Google Scholar
  9. Alfvén, H.: 1986a,Physics Today 39, 22–27.Google Scholar
  10. Alfvén, H.: 1986b,IEEE Transactions on Plasma Science PS-14, 629.Google Scholar
  11. Alfvén, H.: 1986c,IEEE Transactions on Plasma Science PS-14, 779.Google Scholar
  12. Alfvén, H. and Arrhenius, G.: 1976,NASA Scientific Publ. 345, U.S. Government Printing Office, Washington.Google Scholar
  13. Alfvén, H. and Carlqvist, P.: 1967,Solar Phys. 1, 220.Google Scholar
  14. Alfvén, H. and Fälthammar, C.-G.: 1963,Cosmical Electrodynamics, Fundamental Principles, Clarendon Press, Oxford.Google Scholar
  15. Atkinson, G.: 1983, in: T. Potemra (ed.),Magnetospheric Currents, AGU Geophysical Monograph28, 325–330.Google Scholar
  16. Block, L.P.: 1984, in: T. Potemra (ed.),Magnetospheric Currents, AGU Geophysical Monograph 28, 315–324.Google Scholar
  17. Block, L.P.: 1987, in:8th ESA Symposium on European Rocket and Balloon Programs and Related Research. Google Scholar
  18. Block, L.P. and Fälthammar, C.-G.: 1969, in: B.M. McCormac and A. Moholt (eds.),Atmospheric Emission, Proc. NATO Adv. Study Inst., p. 285.Google Scholar
  19. Bryant, D.A.: 1987: in:8th ESA Symposium on European Rockets and Balloon Programs and Related Research. Google Scholar
  20. Carlqvist, P. and Boström, R.: 1970,J. Geophys. Res. Space Physics 75, 7140.Google Scholar
  21. Chang, T. (Editor-in-chief): 1986,Ion Acceleration in the Magnetosphere and Ionosphere, Geophysical Monograph 38, American Geophysical Union, Washington, D.C.Google Scholar
  22. Chappell, C.R.: 1986,6th International Symposium on Solar Terrestrial Physics, Toulouse, paper STP III 1–12.Google Scholar
  23. Chen, M.W., Hada, T. and Ashour-Abdalla, M.: 1987, Center for Plasma Physics and Fusion Engineering, Report PG-1042, University of California, Los Angeles.Google Scholar
  24. Evans, D.S.: 1968,J. Geophys. Res. 73, 2315–2323.Google Scholar
  25. Fahleson, U.: 1961,Phys. Fluids 4, 123.Google Scholar
  26. Forrest, D.et al.: 1986,Adv. Space Res., Proceedings of the 1986 COSPAR Meeting. Google Scholar
  27. Fälthammar, C.-G.: 1977,Rev. Geophys. Space Phys. 15, 457–466.Google Scholar
  28. Fälthammar, C.-G.: 1978,J. Geomagn. Geoelectr. 30, 419–434.Google Scholar
  29. Fälthammar, C.-G.: 1983,ESA Journal 7, 385–404.Google Scholar
  30. Fälthammar, C.-G.: 1985,ESA SP-235, 107–133.Google Scholar
  31. Fälthammar, C.-G.: 1986,IEEE Transactions on Plasma Science PS-14, 616.Google Scholar
  32. Fälthammar, C.-G., Akasofu, S.-I. and Alfvén, H.: 1978,Nature 275, 185–188.Google Scholar
  33. Galeev, A.A.et al.: 1986,Geophys. Res. Lett. 13, 845–848.Google Scholar
  34. Haerendel, G.: 1982,Zeitschrift fur Naturforschung 37a, 728.Google Scholar
  35. Haerendel, G.: 1986,Geophys. Res. Lett. 13, 255–258.Google Scholar
  36. Hultqvist, B.: 1985a, in:Results of the ARCAD 3 Project, CEPAD, Toulouse, p. 177.Google Scholar
  37. Hultqvist, B.: 1985b,Space Sci. Rev. 42, 275.Google Scholar
  38. Jacobsen, C. and Carlqvist, P.: 1964,Icarus 3, 270.Google Scholar
  39. Johnson, R.G. (ed.): 1983,Energetic lon Composition in the Earth's Magnetosphere, Terra Scientific Publ. Co., Tokyo and D. Reidel Publ. Co., Dordrecht.Google Scholar
  40. Knight, S.: 1973,Planet. Space Sci. 21, 741–750.Google Scholar
  41. Lemaire, J. and Scherer, M.: 1974,Planet. Space Sci. 22, 1485–1490.Google Scholar
  42. Lemaire, J. and Scherer, M.: 1983,Ann. Geophys. 1, 91–96.Google Scholar
  43. Lundin, R. and Sandahl, I.: 1978,Some Characteristics of the Parallel Electric Field Acceleration of Electrons over Discrete Auroral Arcs as Observed from two Rocket Flights, ESA SP-135, 125-136.Google Scholar
  44. Lyons, L.R., Evans, D.S. and Lundin, R.: 1979,Geophys. Res. 84, 457–461.Google Scholar
  45. McIlwain, C.E.: 1960,J. Geophys. Res. 65, 2727.Google Scholar
  46. Menietti, J.D. and Burch, J.L.: 1981,Geophys. Res. Lett. 8, 1095–1098.Google Scholar
  47. Newell, P.T.: 1985,Rev. Geophys. 23, 93–104.Google Scholar
  48. Papadopoulos, K.: 1977,Rev. Geophys. Space Phys. 15, 113.Google Scholar
  49. Pellinen, R.J. and Heikkila, W.J.: 1978,J. Geophys. Res. 83, 1544.Google Scholar
  50. Pellinen, R.J. and Heikkila, W.J.: 1984,Space Sci. Rev. 37, 1.Google Scholar
  51. Petelski, E.F.et al.: 1980,Astron. Astrophys. 87, 20.Google Scholar
  52. Shawhan, S.D.: 1976,J. Geophys. Res. 81, 3373–3379.Google Scholar
  53. Shawhan, S.D., Fälthammar, C.-G. and Block, L.P.: 1978,J. Geophys. Res. 83, 1049–1054.Google Scholar
  54. Shelley, E.G.: 1986,Adv. Space. Res. 6, 121.Google Scholar
  55. Shelley, E.G., Johnson, R.G. and Sharp, R.D.: 1972,J. Geophys. Res. 77, 6104–6110.Google Scholar
  56. Shelley, E.G., Sharp, R.D. and Johnson, R.G.: 1976,Geophys. Res. Lett. 3, 654–656.Google Scholar
  57. Shelley, E.G.et al.: 1982,Geophys. Res. Lett. 9, 941–944.Google Scholar
  58. Sherman, J.C.: 1973,Astrophys. Space Sci. 24, 487.Google Scholar
  59. Swift, D.W.: 1975,J. Geophys. Res. 80, 2096.Google Scholar
  60. Torvén, S.: 1979, in: P.J. Palmadesso and K. Papadopoulos (eds.),Formation of Double Layers in Laboratory Plasmas, Wave Instabilities in Space Plasmas, D. Reidel Publ. Co., Dordrecht, p. 109.Google Scholar
  61. Torvén, S., Lindberg, L. and Carpenter, R.T.: 1985,Plasma Physics and Controlled Fusion 27, 143–158.Google Scholar
  62. Yeah, H.-C. and Hill, T.W.: 1981,J. Geophys. Res. 86, 6706–6712.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Carl-Gunne Fälthammar
    • 1
  1. 1.Department of Plasma PhysicsAlfvén Laboratory, The Royal Institute of TechnologyStockholmSweden

Personalised recommendations