Journal of Chemical Ecology

, Volume 16, Issue 12, pp 3373–3382 | Cite as

Rapid, quantitative HPLC analysis ofAsclepias fruticosa L. andDanaus plexippus L. cardenolides

  • Henri W. Groeneveld
  • Harko Steijl
  • Bert Van Den Berg
  • Jopie C. Elings
Article

Abstract

The cardenolide extracts from latex and aerial parts ofAsclepias fruticosa and ofDanaus plexippus reared onA. fruticosa orA. curassavica were purified by adsorption chromatography on silica gel. HPLC analysis on a C18 reverse-phase column with an acetonitrile-water gradient as mobile phase, separated 28 compounds with a UV spectrum typical forcardenolides. Afroside and gomphoside (major components), as well as calotropagenin, calotoxin, calotropin, calactin, uscharidin, uscharin, and voruscharin, occurred as single peaks in the profiles of latex and aerial plant parts ofA. fruticosa. Calactin and calotropin were the major cardenolides inDanaus plexippus reared onA. fruticosa orA. curassavica. Quantitative data obtained with digitoxin as internal standard showed that 1.3–1.5% of the leaf cardenolides were sequestered byDanaus plexippus in which levels of 70–80μg cardenolide per butterfly were measured. The calotropin from the leaves was almost completely sequestered, and 10–13% of the calactin was stored by the butterfly, assuming that no conversion occurred in larval tissues.

Key Words

Asclepias fruticosa milkweed Danaus plexippus monarch butterfly Lepidoptera Danaidae cardenolides HPLC gomphoside afroside digitoxin calactin calotropin cardenolide fingerprint cardiac glycosides internal standard 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson, J.M., andSeiber, J.N. 1978. High-speed chromatography of cardiac glycosides in milk weed plants and monarch butterflies.J. Chromatogr. 148:521–527.PubMedGoogle Scholar
  2. Brower, L.P., McEvov, P.B., Williamson, K.L., andFlannery, M.A. 1972. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America.Science 177:426–429.PubMedGoogle Scholar
  3. Brower, L.P., Edmunds, M., andMoffitt, C.M. 1975. Cardenolide content and palatability of a population ofDanaus chrysippus butterflies from West Africa.J. Entomol. 49:183–196.Google Scholar
  4. Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andTuskes, P.M. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danausplexippus L. reared on the milkweed,Asclepias eriocarpa in California.J. Chem. Ecol. 8:597–633.Google Scholar
  5. Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andHolland, M.M. 1984a. Plantdetermined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus L. reared on milkweed plants in California: 2.Asclepias speciosa. J. Chem. Ecol. 10:601–639.Google Scholar
  6. Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., Hoggard, M.P., andCohen, J.A. 1984b. Plant-determined variation in the cardenolide content and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus reared on milkweed plants in California: 3.Asclepias californica. J. Chem. Ecol. 10:1823–1857.Google Scholar
  7. Carman, R.M., Coombe, R.G., andWatson, T.R. 1964. The cardiac glycosides ofGomphocarpus fruticosus (R.Br.) IV. The nuclear magnetic resonance spectrum of gomphoside.Aust. J. Chem. 17:573–577.Google Scholar
  8. Cheung, H.T.A., Chiu, F.C.K., Watson, T.R., andWells, R.J. 1983. Cardenolide glycosides of theAsclepiadaceae. New glycosides fromAsclepias fruticosa and the stereochemistry of uscharin, voruscharin and calotoxin.J. Chem. Soc., Perkin Trans. I. 2827–2835.Google Scholar
  9. Cheung, H.T.A., Nelson, C.J., andWatson, T.R. 1988. New glucoside conjugates and other cardenolide glycosides from the Monarch butterfly reared onAsclepias fruticosa L. J. Chem. Soc., Perkin Trans. I. 1851–1857.Google Scholar
  10. Cohen, J.A. 1985. Differences and similarities in cardenolide contents of queen and monarch butterflies in Florida and their ecological and evolutionary implications.J. Chem. Ecol, 11:85–103.Google Scholar
  11. Coombe, R.G., andWatson, T.R. 1964. The cardiac glycosides ofGomphocarpus fruticosus R.Br. III. Gomphoside.Aust. J. Chem. 17:92–100.Google Scholar
  12. Desta, B., Kwong, E., andMcerlane, K.M. 1982. Separation of digoxin, digitoxin and their potential metabolites, impurities or degradation products by high performance liquid chromatography.J. Chromatogr. 240:137–143.PubMedGoogle Scholar
  13. Duffey, S.S., andScudder, G.G.E. 1972. Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly coloured Hemiptera and Coleoptera.J. Insect Physiol. 18:63–78.Google Scholar
  14. Fujii, Y., Fujii, H., andYamazaki, M. 1983. Separation and determination of cardiac glycosides inDigitalis purpurea leaves by micro high-performance liquid chromatography.J. Chromatogr. 258:147–153.Google Scholar
  15. Groeneveld, H.W.,Van Den Berg, B.,Elings, J.C., andSeykens, D. 1990. Cardenolide synthesis from malonate inAsclepias curassavica. Phytochemistry. In press.Google Scholar
  16. Lynch, S.P., andMartin, R.A. 1987. Cardenolide content and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus L., and their larval host-plant milkweed,Asclepias viridis Walt., in northwestern Louisiana.J. Chem. Ecol. 13:47–70.Google Scholar
  17. Malcolm, S.B., Cockrell, B.J., andBrower, L.P. 1989. Cardenolide fingerprint of monarch butterflies reared on common milkweed,Asclepias syriaca L.J. Chem. Ecol. 15:819–853.Google Scholar
  18. Martin, R.A., andLynch, S.P. 1988. Cardenolide content and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus L., and their larval host-plant milkweed,Asclepias asperula subsp.capricornu (Woods.) Woods., in north central Texas.J. Chem. Ecol. 14:295–318.Google Scholar
  19. Nelson, C.L., Seiber, J.N., andBrower, L.P. 1981. Seasonal and intraplant variation of cardenolide content in the California milkweed,Asclepias eriocarpa, and implications for plant defense.J. Chem. Ecol. 7:981–1010.Google Scholar
  20. Roeske, C.N., Seiber, J.N., Brower, L.P., andMoffitt, C.M. 1976. Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus L.).Recent Adv. Phytochem. 10:93–167.Google Scholar
  21. Seiber, J.N., Nelson, C.L., andLee, S.M. 1982. Cardenolides in the latex of sevenAsclepias species andCalotropis procera.Phytochemistry 21:2343–2348.Google Scholar
  22. Seiber, J.N., Lee, S.M., andBenson, J.M. 1983. Cardiac glycosides (cardenolides) in species ofAsclepias (Asclepiadaceae), pp. 43–83,in R.F. Keeler and A.T. Tu (eds.). Handbook of Natural Toxins, Vol. I: Plant and Fungal Toxins. Marcel Dekker, Amsterdam.Google Scholar
  23. Tittel, G., andWagner, H. 1981. Qualitative und quantitative Analyse von Herzglykosiddrogen durch HPLC-Verfahren. 3. Mitteilung: Qualitative und quantitative HPLC der Cardenolide ausNerium oleander-drogen und deren Zubereitungen.Planta Med. 43:252–260.Google Scholar
  24. Watson, T.R., andWright, S.E. 1956. The cardiac glycosides ofGomphocarpus fruticosus R.Br. I. Afroside.Aust. J. Chem. 9:497–511.Google Scholar
  25. Watson, T.R., andWright, S.E. 1957. The cardiac glycosides ofGomphocarpus fruticosus R.Br. II. Gomphoside.Aust. J. Chem. 10:79–84.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Henri W. Groeneveld
    • 1
  • Harko Steijl
    • 1
  • Bert Van Den Berg
    • 1
  • Jopie C. Elings
    • 1
  1. 1.Department of Plant Ecology and Evolutionary BiologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations