Journal of Chemical Ecology

, Volume 16, Issue 12, pp 3301–3315 | Cite as

Fungal endophyte-infected grasses: Alkaloid accumulation and aphid response

  • M. R. Siegel
  • G. C. M. Latch
  • L. P. Bush
  • F. F. Fannin
  • D. D. Rowan
  • B. A. Tapper
  • C. W. Bacon
  • M. C. Johnson


The occurrence of the alkaloidsN-formyl andN-acetyl loline, peramine, lolitrem B, and ergovaline and the response of aphids to plants containing these compounds were determined in species and cultivars ofFestuca,Lolium, and other grass genera infected with fungal endophytes (Acremonium spp., andEpichloe typhina). Twenty-nine of 34 host-fungus associations produced one or more of the alkaloids, most frequently peramine or ergovaline. Three alkaloids (lolines, peramine, and ergovaline) were found in tall fescue and in perennial ryegrass infected withA. coenophialum, while peramine, lolitrem B, and ergovaline were present in perennial ryegrass and in tall fescue infected withA. lolii and inF. longifolia infected withE. typhina. WhileA. coenophialum andA. lolii produced similar patterns of alkaloids regardless of the species or cultivar of grass they infected, isolates ofE. typhina produced either no alkaloids or only one or two different alkaloids in the grasses tested. Aphid bioassays indicated thatRhopalosiphum padi andSchizaphis graminum did not survive on grasses containing loline alkaloids and thatS. graminum did not survive on peramine-containing grasses. Ergovaline-containing grasses did not affect either aphid.

Key Words

Endophyte-infected grasses Acremonium endophytes Epichloe typhina grass alkaloids lolines ergovaline peramine lolitrem B aphid responses plant resistance to herbivory Rhopalosiphum padi Schizaphis graminum Homoptera Aphididae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arachevaleta, M., Bacon, C.W., Hoveland, C.S., andRadcliffe, D.E. 1989. Effect of the tall fescue endophyte on plant response to environmental stress.Agron. J. 81:83–90.Google Scholar
  2. Bacon, C.W. 1988. Procedure for isolating the endophyte from tall fescue and screening isolates for ergot alkaloids.Appl. Environ. Microbiol. 54:2615–2618.PubMedGoogle Scholar
  3. Bacon, C.W., Lyons, P.C., Porter, J.K., andRobbins, J.D. 1986. Ergot toxicity from endophyte-infected grasses: A review.Agron. J. 78:106–116.Google Scholar
  4. Barker, G.M., Prestidge, R.A., andPottinger, R.P. 1985. Strategies for Argentine stem weevil control: Effects of drought and endophyte.Proc. N.Z. Grass. Assoc. 47:107–114.Google Scholar
  5. Belesky, D.P., Robbins, J.D., Stuedemann, J.A., Wilkinson, S.R., andDevine, O.J. 1987. Fungal endophyte infection-loline derivative alkaloid concentration of grazed tall fescue.Agron. J. 79:217–220.Google Scholar
  6. Belesky, D.P., Stuedemann, J.A., Plattner, R.D., andWilkinson, S.R. 1988. Ergopeptine alkaloids in grazed tall fescue.Agron. J. 80:209–212.Google Scholar
  7. Bush, L.P., Cornelius, P.L., Buckner, R.C., Varney, D.R., Chapman, R.A., Burriss, P.B., II, Kennedy, C.W., Jones, T.A., andSaunders, M.J. 1982. Association of N-acetyl loline and N-formyl loline withEpichloe typhina in tall fescue.Crop Sci. 22:941–943.Google Scholar
  8. Clay, K. 1988. Clavicipitaceous fungal endophytes of grasses: coevolution and the change from parasitism to mutualism, pp. 79–105,in K. Pirozynski and D. Harkworth (eds.). Coevolution of Fungi with Plants and Animals. Academic Press, New York.Google Scholar
  9. Clay, K. 1989. Clavicipitaceous endophytes of grasses: Their potential as biocontrol agents.Mycol. Res. 92:1–12.Google Scholar
  10. Dahlman, D.L., Eichenseer, H., andSiegel, M.R. 1990. Chemical perspectives on endophytegrass interaction and their implications to insect herbivory,in P. Barbosa, L. Kirschik, and E. Jones (eds.). Multi-trophic Level Interactions among Microorganisms, Plants and Insects. John Wiley & Sons, New York. In press.Google Scholar
  11. Diehl, W.W. 1950.Balansia and theBalansiae in America. Agriculture Monograph 4, U.S. Department of Agriculture, Washington, D.C.Google Scholar
  12. Dymock, J.J., Rowan, D.D., andMcGee, I.R. 1989. Effects of endophyte-produced mycotoxins on Argentine stem weevil and the cutwormGraphonia mutans.Proc. Australas. Conf. Grassl. Invert. Ecol. 5:35–43.Google Scholar
  13. Fannin, F.F., Bush, L.P., andSiegel, M.R. 1990. Analysis of peramine in fungal endophyteincfected grasses by reversed-phase thin-layer chromatography.J. Chromatogr. 503:288–292.Google Scholar
  14. Funk, C.R.,Halisky, P.M.,Ahmad, S., andHurley, R.H. 1985. How endophytes modify turfgrass performance and response to insect pests in turfgrass breeding and evaluation trials, pp. 137–145,in F. Lemaire (ed.). Proceedings, Fifth International Turf Research Conference, Avignon, France.Google Scholar
  15. Gallagher, R.T., Hawkes, A.D., andStewart, J.M. 1985. Rapid determination of the neurotoxin lolitrem B in perennial ryegrass by high-performance liquid chromatography with fluorescence detection.J. Chromatogr. 321:217–226.PubMedGoogle Scholar
  16. Hill, N.S., Stringer, W.C., Rottenhaus, O.E., Belesky, O.P., Parrott, W.A., andPope, D.D. 1990. Growth, morphological and chemical component responses of tall fescue toAcremonium coenophialum.Crop. Sci. 30:156–161.Google Scholar
  17. Johnson, M.C., Dahlman, D.L., Siegel, M.R., Bush, L.P., Latch, G.C.M., Potter, D.A., andVarney, D.R. 1985a. Insect feeding deterrents in endophyte-infected tall fescue.Appl. Environ. Microbiol. 49:568–571.Google Scholar
  18. Johnson, M.C., Siegel, M.R., andSchmidt, B.A. 1985b. Serological reactivities of endophytic fungi from tall fescue and perennial ryegrass and ofEpichloe typhina.Plant Dis. 69:200–202.Google Scholar
  19. Kennedy, C.W., andBush, L.P. 1983. Effect of environmental and management factors on the accumulation ofN-acetyl andN-formyl loline alkaloids in tall fescue.Crop Sci. 23:547–522.Google Scholar
  20. Latch, G.C.M., andChristensen, M.J. 1985. Artificial infection of grasses with endophytes.Ann. Appl. Biol. 107:17–24.Google Scholar
  21. Latch, G.C.M., Christensen, M.J., andSamuels, G.J. 1984. Five endophytes ofLolium andFestuca in New Zealand.Mycotaxon 20:535–550.Google Scholar
  22. Latch, G.C.M., Hunt, W.F., andMusgrave, D.R. 1985. Endophytic fungi affect growth of perennial ryegrass.N.Z. J. Agric. Res. 28:165–168.Google Scholar
  23. Latch, G.C.M., Potter, L.R., andTyler, B.F. 1987. Incidence of endophytes in seeds from collections ofLolium andFestuca species.Ann. Appl. Biol. 111:59–64.Google Scholar
  24. Morgan-Jones, G., andGams, W. 1982. Notes on Hyphomycetes, XLI. An endophyte ofFestuca arundinacea and the anamorph ofEpichloe typhina, new taxa in one of two new sections ofAcremonium.Mycotaxon 15:311–318.Google Scholar
  25. Mortimer, P.H., andDi Menna, M.E. 1985. Interactions ofLolium endophyte on pasture production and perennial ryegrass staggers disease, pp. 149–158,in J. Lacey (ed.). Trichothecenes and Other Mycotoxins. John Wiley & Sons, New York.Google Scholar
  26. Prestidge, R.A., andGallagher, R.T. 1985. Lolitrem B-a stem weevil toxin isolated from Acremonium-infected ryegrass.Proc. N.Z. Weed Pest Control Conf. 38:38–40.Google Scholar
  27. Read, J.C., andCamp, B.J. 1986. The effect of the fungal endophyteAcremonium coenophialum in tall fescue on animal performance, toxicity, and stand maintenance.Agron. J. 78:848–850.Google Scholar
  28. Rowan, D.D., andGaynor, D.L. 1986. Isolation of feeding deterrents against Argentine stem weevil from ryegrass infected with the endophyteAcremonium loliae.J. Chem. Ecol. 12:647–658.Google Scholar
  29. Rowan, D.D., andShaw, J.G. 1987. Detection of ergopeptine alkaloids in endophyte-infected perennial ryegrass by tandem mass spectrometry.N.Z. Vet. J. 35:197–198.Google Scholar
  30. Shelby, R.A., andDalrymple, L.W. 1987. Incidence and distribution of the tall fescue endophyte in the United States.Plant Dis. 71:783–786.Google Scholar
  31. Siegel, M.R., Latch, G.C.M., andJohnson, M.C. 1987. Fungal endophytes of grasses.Annu. Rev. Phytopathol. 25:293–315.Google Scholar
  32. Stuedemann, J.A., andHoveland, C.S. 1988. Fescue endophyte: History and impact on animal agriculture.J. Prod. Agric. 1:39–44.Google Scholar
  33. Tapper, B.A., Rowan, D.D., andLatch, G.C.M. 1989. Detection and measurement of the alkaloid peramine in endophyte-infected grasses.J. Chromatogr. 463:133–138.Google Scholar
  34. Weedon, C.M., andMantle, P.G. 1987. Paxilline biosynthesis byAcremonium loliae; A step towards defining the origin of lolitrem neurotoxins.Phytochemistry 26:969–971.Google Scholar
  35. White, J.F., Jr. 1987. Widespread distribution of endophytes in the Poaceae.Plant Dis. 71:340–342.Google Scholar
  36. White, J.F., Jr. 1988. Endophyte-host associations in forage grasses. XI. A proposal concerning origin and evolution.Mycologia 80:442–446.Google Scholar
  37. Yates, S.G., andPowell, R.G. 1988. Analysis of ergopeptine alkaloids in endophyte-infected tall fescue.J. Agric. Food Chem. 36:337–340.Google Scholar
  38. Yates, S.G., Plattner, R.D., andGarner, G.B. 1985. Detection of ergopeptine alkaloids in endophyte infected, toxic Ky-31 tall fescue by mass spectrometry/mass spectrometry.J. Agric. Food Chem. 33:719–722.Google Scholar
  39. Yates, S.G., Fenster, J.C., andBartelt, R.J. 1989. Assay of tall fescue seed extracts, fractions, and alkaloids using the large milkweed bug.J. Agric. Food Chem. 37:354–357.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • M. R. Siegel
    • 1
  • G. C. M. Latch
    • 2
  • L. P. Bush
    • 3
  • F. F. Fannin
    • 3
  • D. D. Rowan
    • 2
  • B. A. Tapper
    • 2
  • C. W. Bacon
    • 4
  • M. C. Johnson
    • 5
  1. 1.Plant Pathology DepartmentUniversity of KentuckyLexington
  2. 2.Department of Scientific and Industrial ResearchPalmerston NorthNew Zealand
  3. 3.Agronomy DepartmentUniversity of KentuckyLexington
  4. 4.R.B. Russell Agricultural Research CenterUSDA/ARSAthens
  5. 5.Biology DepartmentGeorgetown CollegeGeorgetown

Personalised recommendations