Skip to main content
Log in

Metabolism and exudation of canavanine during development of alfalfa (Medicago sativa L. cv. verko)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The structural analog of amino acidl-arginine,l-canavanine (2-amino-4-guanidinooxybutyric acid), is found in 26 cultivars of alfalfa. Its concentration ranges from 6 to 16 mg/g of dry seeds. Canavanine represented more than 70% of the total soluble nitrogen in seeds. Practically all of the canavanine was stored in the cotyledons. Comparison is made of the canavanine content in the cultivars Verko and Europa harvested in different years. During sprouting, 29% of the guanidinooxy compound was translocated into the hypocotyl and radicle in 24 hr. In this early stage of seedling development, the level of the nonprotein amino acid, canavanine, increased threefold whereas the protein amino acid, arginine, as well as asparagine increased 11- and 35-fold, respectively. Two-day-old seedlings are capable of synthesizing canavanine derived from canaline up to 25%. Contrary to this finding in seedlings grown in the time range of 24 days, the guanidino compounds canavanine and arginine were metabolized rapidly, whereas asparagine increased. Furthermore, the toxic canavanine got into the environment of swelled seeds or into the rhizosphere of young seedlings and increased in the milieu to concentrations at 3–57μM. In a biotest, this inhibited the growth of a tomato cell suspension culture as well as the growth of cabbage radicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, E.A., Lackey, J.A., andPolhill, R.M. 1978. Systematic significance of canavanine in the Papilionoideae (Faboideae).Biochem. Syst. Ecol. 6:201–212.

    Google Scholar 

  • Bickoff, E.M., Kohler, G.O., andSmith, D. 1972. Chemical composition of herbage, pp. 247–282,in C.H. Hanson (ed.). Alfalfa Science and Technology. ASA Inc. Publ., Madison, Wisconsin.

    Google Scholar 

  • Brune, W., Fabris, D., andJose, S. 1988. The canavanine-pentacyanoamine ferrate complex formation,Ann. Acad. Bras. dene. 60:355–364.

    Google Scholar 

  • Downum, K.R., Rosenthal, G.A., andCohen, W.S. 1983.l-Argenine andl-canavanine metabolism in jack bean,Canavalia ensiformis (L.) DC. and soybean,Glycine max (L.).Merr. Plant Physiol. 73:965–968.

    Google Scholar 

  • Fearon, W.A., andBell, E.A. 1955. Canavanine: Detection and occurrence inColutea arborescens.Biochem. J. 59:221.

    Google Scholar 

  • Fujihara, S., Nakashima, T., Kurogochi, Y., andYamaguchi, M. 1986. Distribution and metabolism of sym-homospermidine and canavaline in the sword bean (Canavalia gladiata cv. Shironata).Plant Physiol. 82:795–800.

    Google Scholar 

  • Girousse, C., Delrot, S., andBournoville, R. 1991. Sugar and amino acid composition and phloem sap ofMedicago sativa: A comparative study of two collecting methods.Plant Physiol. Biochem. 29:41–48.

    Google Scholar 

  • Gorski, P.M., Miersch, J., andPloszynski, M. 1991. Production and biological activity of saponins and canavanine in alfalfa seedlings.J. Chem. Ecol. 17:1135–1143.

    Google Scholar 

  • Grancharov, K., Krauss, G.J., Spassovska, N., Miersch, J., Maneva, L., Mladenova, J., andGolovinsky, E. 1985. Inhibitory effects of pyruvic acid semi- and thiosemicarbazone on the growth of bacteria, yeasts, experimental tumours and plant cells.Pharmazie 40:574–575.

    Google Scholar 

  • Kasai, T., andSakamura, S. 1986. Reexamination of canavanine disappearance during germination of alfalfa (Medicago sativa).J. Nutr. Sci. Vitaminol. 32:77–82.

    Google Scholar 

  • Lavin, M. 1986. The occurrence of canavanine in the seeds of the tribe Robiniae.Biochem. Syst. Ecol. 14:71–74.

    Google Scholar 

  • Miersch, J. 1967. Nachweis und Isolierung von Canalin (2-Amino-4-aminooxybuttersäure).Naturwissenschaften 54:169–170.

    Google Scholar 

  • Miersch, J., Johlke, C., andSchlee, D. 1988. Zum Canavanin-metabolismus während der Sämlingsentwicklung von Luzerne (Medicago sativa L. cv. Verko).Wiss. Beitr. Univ. Halle 33(S65): 62–71.

    Google Scholar 

  • Miersch, J., Voynova, J., andGolovinsky, E. 1990. Canavanine in Bulgarian cultivars of alfalfa.Ct. R. Acad. Bulg. Sci. 43:75–76.

    Google Scholar 

  • Natelson, S. 1985a. Canavanine in alfalfa (Medicago sativa).Experientia 41:257–259.

    Google Scholar 

  • Natelson, S. 1985b. Canavanine to arginine ratio in alfalfa (Medicago sativa), clover (Trifolium), and the jack bean (Canavalia ensiformis).J. Agric. Food Chem. 33:413–419.

    Google Scholar 

  • Natelson, S., andBratton, G.R. 1984. Canavanine assay of some alfalfa varieties (Medicago sativa) by fluorescence: Practical procedure for canavanine preparation.Microchem. J. 29:26–43.

    Google Scholar 

  • Nover, L., Neumann, D., andScharf, K.-D. 1989. Heat Shock and Other Stress Response Systems of Plants. Springer-Verlag Berlin.

    Google Scholar 

  • Richter, M. 1967. Dissertation. Göttingen.

  • Rosenthal, G.A. 1972. Investigation of canavanine biochemistry in the jack bean plant,Canavalia ensiformis (L.) DC. II. Canavanine in the developing plant.Plant Physiol. 50:328–331.

    Google Scholar 

  • Rosenthal, G.A. 1973. The preparation and colorimetric analysis ofl-canaline.Anal. Biochem. 51:354–361.

    Google Scholar 

  • Rosenthal, G.A. 1977a. The biological effects and mode of action ofl-canavanine, a structural analogue ofl-arginine.Q. Rev. Biol. 52:155–178.

    Google Scholar 

  • Rosenthal, G.A. 1977b. Nitrogen allocation forl-canavanine synthesis and its relationship to chemical defense of the seed.Biochem. System. Ecol. 5:219–220.

    Google Scholar 

  • Rosenthal, G.A. 1977c. Preparation and colorimetric analysis ofl-canavanine.Anal. Biochem. 77:147–151.

    Google Scholar 

  • Rosenthal, G.A. 1990. Metabolism ofl-canavanine andl-canaline in leguminous plants.Plant Physiol. 94:1–3.

    Google Scholar 

  • Rosenthal, G.A. 1991. The biochemical basis for the deleterious effects ofl-canavanine.Phytochemistry 30:1055–1058.

    Google Scholar 

  • Rosenthal, G.A., andDahlman, D.L. 1982. A cautionary note on pentcyanoammoniumferrate use for determiningl-canavanine occurring in biological materials.Experientia 38:1034–1035.

    Google Scholar 

  • Spackman, D.H., Stein, W.H., andMoore, S. 1958. Amino acid analysis.Anal. Chem. 30:1190–1195.

    Google Scholar 

  • Sugii, M., Miura, H., andNagata, K. 1981. 3-Isoxazolidone from jack bean seedlings.Phytochemistry 20:451–453.

    Google Scholar 

  • Takahara, K., Nakashini, S., andNatelson, S. 1978. Studies on the reductive cleavage of canavanine and canavaninosuccinic acid.Arch. Biochem. Biophys. 145:85–95.

    Google Scholar 

  • Töpfer, R., Miersch, J., andReinbothe, H. 1970. Untersuchungen zum Abbau von Canavanin in Fabaceae.Biochem. Physiol. Pf1. 161:231–242.

    Google Scholar 

  • Tschiersch, B. 1961. Über das Vorkommen von Canavanin.Flora (Jena) 150:87–94.

    Google Scholar 

  • Weber, E. 1986. Grundriss der biologischen Statistik. Fischer-Verlag, Jena.

    Google Scholar 

  • Woods, K.R., andWang, K.T. 1967. Separation of dansyl-amino acids by polyamide layer chromatography.Biochim. Biophys. Acta 133:369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miersch, J., Jühlke, C., Sternkopf, G. et al. Metabolism and exudation of canavanine during development of alfalfa (Medicago sativa L. cv. verko). J Chem Ecol 18, 2117–2129 (1992). https://doi.org/10.1007/BF00981932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00981932

Key words

Navigation