High resolution two-dimensional minimum free energy AR spectral estimation

  • Paul Kiernan
Article

Abstract

We extend the minimum free energy (MFE) parameter estimation method to 2-D fields. This 2-D MFE method may be used to determine autoregressive (AR) model parameters for spectral estimation of 2-D fields. It may also be used to provide AR models for texture synthesis. The performance of the technique for closely spaced sinusoids in white noise is demonstrated by numerical example. Better results can be achieved than with the multidimensional Levinson algorithm.

Key Words

Spectral estimation 2-D causal models 2-D AR models minimum free energy parameter estimation field synthesis signal processing temperature MFE models image modeling texture synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. P. Box and G. M. Jenkins,Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, CA, 1976.Google Scholar
  2. 2.
    A. K. Jain,Fundamentals of Digital Image Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.Google Scholar
  3. 3.
    S. L. Marple,Digital Spectral Analysis with Applications, Englewood Cliffs, NJ: Prentice-Hall Signal Processing series, 1987.Google Scholar
  4. 4.
    J. M. Pimbley, “Recursive autoregressive spectral estimation by minimisation of the free energy,”IEEE Trans. Signal Processing, vol. 40, pp. 1518–1527, June 1992.Google Scholar
  5. 5.
    J. M. Pimbley and S. D. Silverstein, “Recursive minimum free energy spectral estimation,”Proc. 23rd Asilomar Conf. Signals, Syst. Comput., pp. 1051–1055, 1989.Google Scholar
  6. 6.
    P. Whittle, “On stationary processes in the plane,”Biometrika, vol. 41, pp. 434–449, 1954.Google Scholar
  7. 7.
    X.-D. Zhang and J. Cheng, “High resolution two-dimensional ARMA spectral estimation,”IEEE Trans. Signal Processing, vol. 39, pp. 765–770, March 1991.Google Scholar
  8. 8.
    S. M. Kay,Modern Spectral Estimation: Theory and Application, Englewood Cliffs, NJ: Prentice-Hall, 1988.Google Scholar
  9. 9.
    C. W. Therrien, “Relations between 2-D and multichannel linear prediction,”IEEE Trans. Acoustics, Speech and Signal Processing, vol. 29, pp. 454–456, June 1981.Google Scholar
  10. 10.
    S. D. Silverstein and J. M. Pimbley, “The minimum free energy method of spectral estimation,” inAdvances in Spectral Analysis and Array Processing, edited by S. Haykin, Englewood Cliffs, NJ: Prentice-Hall, 1992.Google Scholar
  11. 11.
    J. E. Dennis, Jr. and D. J. Woods,Optimization on Microcomputers: The Nedler-Mead Simplex Algorithm. New Computing Environments: Microcomputers in Large-Scale Computing, edited by A. Wouk, SIAM, pp. 116–122, 1987.Google Scholar
  12. 12.
    J. E. Dennis, Jr. and R. B. Schnabel,Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, 1983.Google Scholar
  13. 13.
    L. Zou and B. Liu, “On resolving two-dimensional sinusoids in white noise using different spectral estimation,”IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-36, pp. 1338–1350, Aug. 1988.Google Scholar
  14. 14.
    S. D. Silverstein and J. M. Pimbley, “Minimum-free-energy method of spectral estimation: autocorrelation sequence approach,”J. Opt. Soc. Am. A/vol. 7, pp. 356–372, March 1990.Google Scholar
  15. 15.
    X.-D. Zhang, “On the estimation of two-dimensional moving average parameters,”IEEE Trans. on Automatic Control, vol. 36, pp. 1196–1199, Oct. 1991.Google Scholar
  16. 16.
    J. Lim,Two-Dimensional Signal and Image Processing, Chapter 6, Englewood Cliffs, NJ: Prentice-Hall, 1990.Google Scholar
  17. 17.
    T. J. Ulrych and C. J. Walker,High Resolution 2-Dimensional Power Spectral Estimation, Applied Time Series Analysis II, edited by D.F. Findley, pp. 71–99, New York: Academic Press, 1981.Google Scholar
  18. 18.
    D. K. Cooper and J. M. Pimbley, “A minimum free energy hybrid algorithm for 2-D spectral estimation,”IEEE Trans. on Signal Processing, vol. 42, pp. 698–702, March 1994.Google Scholar
  19. 19.
    R. L. Kashyap, “Inconsistency of the AIC rule for estimating the order of autoregressive models,”IEEE Trans. Aut. Control, vol. AC-25, pp. 996–997, Oct. 1980.Google Scholar
  20. 20.
    S. F. Gull, “Developments in maximum entropy data analysis,” inMaximum Entropy and Bayesian Methods, edited by J. Skilling, Boston: Kluwer, 1989.Google Scholar
  21. 21.
    S. Sibisi, “Regularization and inverse problem,” in Maximum Entropy and Bayesian Methods, edited by J. Skilling. Boston: Kluwer, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Paul Kiernan
    • 1
    • 2
  1. 1.Department of Electronic and Communications EngineeringDublin Institute of TechnologyDublin 8
  2. 2.School of Computer ApplicationsDublin City UniversityDublin 9Ireland

Personalised recommendations