Journal of Materials Science

, Volume 19, Issue 12, pp 3895–3907 | Cite as

Inherent ductility in amorphous Ta2O5 films

  • Hani Rizkalla
  • Stephen T. Wellinghoff
Papers

Abstract

Thin films (30 to 80 nm) of refractory tantalum metal were successfully sputter-deposited on uniformly deformable fluoropolymer and polyimide substrates in stress free form. These films were later anodized into amorphous Ta2O5 which is a non-porous (barriertype) oxide with excellent corrosion resistant properties. X-ray photo-emission spectroscopy studies were carried out on tantalum and Ta2O5 to determine the chemical composition and oxidation states of elements. Thin tantalum and Ta2O5 films on fluoropolymer substrates contained fluorine as an impurity while similar films on polyimide substrate contained no fluorine and, in general, fewer impurities. Both thin tantalum films and the corresponding anodic oxides, when deformed in tension to 10% strain, exhibited the expected ductile behaviour of metals where slip bands were observed in the electron microscope. In some cases, minor cracks were observed in the deformed anodic films due to suspected local detachment of the film from the substrate.

Keywords

Fluorine Tantalum Slip Band Anodic Film Corrosion Resistant Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. H. Choo andO. F. Devereux,J. Electrochem. Soc. 123 (1976) 1868.Google Scholar
  2. 2.
    D. H. Bradhurst andJ. S. L. Leach,ibid. 113 (1966) 1245.Google Scholar
  3. 3.
    J. S. L. Leach andP. Neufeld,Proc. Brit. Ceram. Soc. 6 (1966) 49.Google Scholar
  4. 4.
    Idem, Corros. Sci. 9 (1969) 225.Google Scholar
  5. 5.
    N. J. Cochrane andR. J. Block,J. Electrochem. Soc. 117 (1970) 225.Google Scholar
  6. 6.
    P. Mehdizadeh andR. J. Block,ibid. 119 (1972) 1091.Google Scholar
  7. 7.
    C. Edeleauu andT. J. Law,Phil. Mag. 7 (1962) 573.Google Scholar
  8. 8.
    J. C. Grosskreutz,J. Electrochem. Soc. 116 (1969) 1232.Google Scholar
  9. 9.
    Idem, ibid. 117 (1970) 940.Google Scholar
  10. 10.
    S. F. Bubar andD. A. Vermilyea,ibid. 11 (1966) 892.Google Scholar
  11. 11.
    D. Eliezer andD. G. Brandon,Thin Solid Films 12 (1972) 319.Google Scholar
  12. 12.
    M. Propp andL. Young,J. Electrochem. Soc. 126 (1979) 624.Google Scholar
  13. 13.
    L. Young, “Anodic Oxide Films” (Academic Press, London, 1961) p. 69.Google Scholar
  14. 14.
    V. K. Sethi andR. Gibala,Thin Solid Films 39 (1976) 79.Google Scholar
  15. 15.
    Idem, Acta Metall. 25 (1977) 332.Google Scholar
  16. 16.
    Idem, Scripta Metall. 9 (1975) 527.Google Scholar
  17. 17.
    Idem, in Proceedings of the 2nd International Conference on Mechanical Behaviour of Materials (American Society for Metals, Cleveland, OH, 1976) p. 73.Google Scholar
  18. 18.
    F. T. Sisco andE. Epremiuan (eds) “Columbium and Tantalum” (Wiley, New York, 1963).Google Scholar
  19. 19.
    H. K. Yasuda, paper presented at US Army Research Office Working Group Meeting on Protective Materials, Newport, RI, October 1982.Google Scholar
  20. 20.
    M. Read andC. Altman,Appl. Phys. Lett. 7 (1965) 51.Google Scholar
  21. 21.
    R. Berry, P. Hall andM. Harris, “Thin Film Technology” (Van Nostrand, New Jersey, 1968).Google Scholar
  22. 22.
    H. J. Schwetze, H. Ehlbech andG. Doerbeck, Transcriptions of the 10th National Vacuum Symposium (Macmillan Co., New York, 1963) p. 434.Google Scholar
  23. 23.
    W. D. Westwood,Thin Solid Films 15 (1973) 15.Google Scholar
  24. 24.
    W. D. Westwood andR. Boynton,J. Appl. Phys. 43 (1972) 2691.Google Scholar
  25. 25.
    L. G. Feinstein andR. D. Huttemann,Thin Solid Films 12 (1972) S47.Google Scholar
  26. 26.
    Idem, ibid. 16 (1973) 29.Google Scholar
  27. 27.
    L. Eckertova, “Physics of Thin Films” (Plenum Press, New York, 1977).Google Scholar
  28. 28.
    L. Maissel, in “Handbook of Thin Films Technology”, edited by L. Maissel and R. Glancy (McGraw-Hill Co., New York, 1970).Google Scholar
  29. 29.
    G. Thomas andM. Goringe, “Transmission Electron Olicroscopy of Materials”, (John Wiley and Sons, New York, 1979).Google Scholar
  30. 30.
    S. T. Wellinghoff, E. Baer andJ. L. Koenig,J. Polym. Sci. Phys. 15 (11) (1977) 1913.Google Scholar
  31. 31.
    J. C. M. Li, in “Frontiers in Materials Science”, edited by L. Muir and C. Stein (Marcel Dekker, Inc., New York, 1976) p. 527.Google Scholar
  32. 32.
    J. J. Gilman, “Dislocation Dynamics”, edited by A. R. Rosenfieldet al. (McGraw-Hill, New York, 1968).Google Scholar
  33. 33.
    J. C. Li, “Metallic Glasses” (American Society for Metals, Metals Park, OH, 1976) p. 224.Google Scholar
  34. 34.
    A. S. Argon,Phil. Mag. 28 (1973) 839.Google Scholar
  35. 35.
    L. Young andD. J. Smith,J. Electrochem. Soc. 126 (1979) 765.Google Scholar
  36. 36.
    R. S. Roth andN. C. Stephen, “Chemistry of Extended Defects in Solids”, (North Holland, Amsterdam, 1976) p. 167.Google Scholar
  37. 37.
    N. C. Stephen andR. S. Roth,Acta Crystallogr. Sect. B 27 (1971) 1037.Google Scholar
  38. 38.
    J. M. Shultz, “Polymer Materials Science” (Prentice Hall, Englewood Cliffs, NJ, 1974).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • Hani Rizkalla
    • 1
  • Stephen T. Wellinghoff
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations