Measurement Techniques

, Volume 10, Issue 6, pp 739–742 | Cite as

Dose equivalent of ionizing radiations

  • I. B. Keirim-Markus
  • V. I. Popov
Measurements of Radiation
  • 11 Downloads

Conclusions

  1. 1.

    The definition for the “dose equivalent” suggested by the ICRU contains uncertainties which impede its practical implementation, reproduction, and measurements.

     
  2. 2.
    It is suggested to define the dose equivalent, in a manner free from the above deficiencies, as:
    $$Q = D\overline \eta = \int\limits_{0.18}^\infty {D (L) \eta (L) dL}$$
    . It has been shown how it is possible to account for factor DF which does not figure in the definition.
     
  3. 3.

    The reproduction of the rem unit can be reduced to the reproduction of the rad unit and a subsequent testing of the energy characteristics (with respect to linear energy losses) by means of radiations with known and relatively narrow spectra in terms of linear energy losses.

     

Keywords

Radiation Physical Chemistry Analytical Chemistry Energy Loss Practical Implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Report 10a of ICRU, NBS (USA) Handbook 84 (1962).Google Scholar
  2. 2.
    Report of the RBE Comittee Health Physics,9, 357 (1963).Google Scholar
  3. 3.
    H. H. Rossi, Nucleonics,21, 74 (1963).Google Scholar
  4. 4.
    G. J. Neary, Phys. Med. Biol.,7, 419 (1963).Google Scholar
  5. 5.
    I. B. Keirim-Markus et al., Paper Read at the IAEA Symposium on Neutron Dosimetry, Vienna (1966).Google Scholar
  6. 6.
    I. B. Keirim-Markus et al., Izmerit. tekhn., No. 11 (1966).Google Scholar
  7. 7.
    M. F. Yudin, Izmerit. tekhn., No. 11 (1966).Google Scholar
  8. 8.
    B. M. Isaev et al., Izmerit. tekhn., No. 11 (1966).Google Scholar
  9. 9.
    Yu. Sivintsev, AÉ,20, 455 (1966).Google Scholar
  10. 10.
    V. G. Bobkov et al., Radiation Safety in Cosmic Flights [in Russian], Atomizdat, Moscow (1964).Google Scholar
  11. 11.
    Recommendations of the ICRP, Brit. J. Radiol., Suppl. 6 (1955).Google Scholar
  12. 12.
    G. M. Obaturov, Coll.: Personnel Dosimetry for Radiation Accidents, Vol. 1, IAEA, Vienna (1965), p. 329.Google Scholar
  13. 13.
    I. B. Keirim-Markus et al., AÉ,15, 368 (1963).Google Scholar
  14. 14.
    AÉ,16, 177 (1964).Google Scholar
  15. 15.
    J. O. Anderson and J. B. Brown, Coll.: Neutron Dosimetry, Vol. 2, IAEA, Vienna (1963), p. 87; Nukleonik,6, 237 (1964).Google Scholar
  16. 16.
    D. Nachtigall and F. Rohloff, Nukleonik,6, 330 (1964).Google Scholar
  17. 17.
    I. W. Leake. AERE-R4525, U. K. Atomic Energy Authority (1965).Google Scholar
  18. 18.
    H. H. Rossi and W. Rosenzweig, Radiology,64, 404 (1955).Google Scholar
  19. 19.
    H. H. Rossi and W. Rosenzweig, Rad. Res.,2, 417 (1955).Google Scholar
  20. 20.
    H. H. Rossi, Rad. Res.,10, 522 (1959).Google Scholar
  21. 21.
    W. Rosenzweig and H. H. Rossi, Rad. Res.,10, 532 (1959).Google Scholar
  22. 22.
    M. I. Zel'chinskii, Coll.: Neutron Dosimetry, Vol. 2, IAEA, Vienna (1963), p. 397; Atomnaya nauka i tekhnika,4, 51 (1964).Google Scholar
  23. 23.
    I. B. Keirim-Markus and S. N. Kraitor, Paper Read at the IAEA Symposium on Neutron Dosimetry, Vienna (1966).Google Scholar
  24. 24.
    W. S. Shyder, Neufeld, J. Rad. Res.,6, 67 (1957).Google Scholar

Copyright information

© Consultants Bureau 1968

Authors and Affiliations

  • I. B. Keirim-Markus
  • V. I. Popov

There are no affiliations available

Personalised recommendations