Journal of Chemical Ecology

, Volume 19, Issue 12, pp 2767–2781 | Cite as

Male-specific volatiles from nearctic and Australasian true bugs (Heteroptera: Coreidae and Alydidae)

  • Jeffrey R. Aldrich
  • Geoff K. Waite
  • Chris Moore
  • Jerry A. Payne
  • William R. Lusby
  • Jan P. Kochansky


Aeration and exocrine gland extracts were analyzed for three Coreidae and two Alydidae. Males of all the species studied emit volatile blends that are probably pheromones, but sexual communication in these insects evolved differently. In the alydids,Riptortus serripes andMirperus scutellaris, the metathoracic scent glands are sexually dimorphic, and the dimorphisms are expressed chemically. Secretions from the male alydids contain high concentrations of esters or alcohols [e.g., (E)-2-hexenyl (Z)-3-hexenoate, (E)-2-hexenyl butyrate, and (E)-2-octenol], while females produce mainly acids and aldehydes [e.g., butyric and hexanoic acids, and (E)-2-hexenal]. In the coreids,Amblypelta lutescens lutescens, Amblypelta nitida, andLeptoglossus phyllopus, the metathoracic scent glands are not sexually dimorphic, but male- and species-specific volatiles are released, apparently from cells in the cuticular epidermis. The coreid male-specific volatiles are primarily monoterpenes and sesquiterpenes, including (−)-(3R)-(E)-nerolidol as the major component fromA. lutescens lutescens (an Australasian species) andL. phyllopus (a Nearctic species). Only (+)-(3S)-(E)-nerolidol is commonly found in plants so (E)-nerolidol from these coreids is environmentally unique because of its chirality.

Key Words

Hemiptera Coreidae pheromone attractant scent glands allomone (E)-nerolidol biocontrol chirality enantiomers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrich, J.R. 1988a. Chemical ecology of the Heteroptera.Annu. Rev. Entomol. 33:211–238.Google Scholar
  2. Aldrich, J.R. 1988b. Chemistry and biological activity of pentatomoid sex pheromones, pp. 417–431,in H.G. Cutler (ed.). Biologically Active Natural Products: Potential Use in Agriculture. ACS Symposium Series. 380, Washington, D.C.Google Scholar
  3. Aldrich, J.R., Blum, M.S., andDuffey, S.S. 1976. Male specific natural products in the bug,Leptoglossus phyllopus: Chemistry and possible function.J. Insect Physiol. 22:1201–1206.Google Scholar
  4. Aldrich, J.R., Blum, M.S., andFales, H.M. 1979. Species specific male scents of leaf-footed bugs,Leptoglossus spp. (Heteroptera: Coeridae).J. Chem. Ecol. 5:53–62.Google Scholar
  5. Aldrich, J.R., Oliver, J.E., Lusby, W.R., andKochansky, J.P. 1986. Identification of male specific exocrine secretions from predatory stink bugs (Hemiptera, Pentatomidae).Arch. Insect Biochem. Physiol. 3:1–12.Google Scholar
  6. Aldrich, J.R., Lusby, W.R., Marron, B.E., Nicolaou, K.C., Hoffman, M.P., andWilson, L.T. 1989. Pheromone blends of green stink bugs and possible parasitoid selection.Naturwissenschaften 76:173–176.Google Scholar
  7. Aldrich, J.R., Hoffmann, M.P., Kochansky, J.P., Lusby, W.R., Eger, J.E., andPayne, J.A. 1991a. Identification and attractiveness of a major pheromone component for NearcticEuschistus spp. stink bugs (Heteroptera: Pentatomidae).Environ. Entomol. 20:478–483.Google Scholar
  8. Aldrich, J.R., Kochansky, J.P., Lusby, W.R., andBorges, M. 1991b. Pheromone blends of predaceous bugs (Heteroptera: Pentatomidae:Podisus spp.).Z. Naturforsch. 46C:264–269.Google Scholar
  9. Aldrich, J.R., Numata, H., Borges, M., Bin, F., Waite, G.K., andLusby, W.R. 1993. Artifacts and pheromone blends fromNezara spp. and other stink bugs (Heteroptera: Pentatomidae).Z. Naturforsch. 48C:73–79.Google Scholar
  10. Anet, E.F.L.J. 1970. Synthesis of (E,Z)-α-, (Z,Z)-α-, and (Z)-β-farnesene.Aust. J. Chem. 23:2101–2108.Google Scholar
  11. Baker, J.T., Blake, J.D., MacLeod, J.K., Ironside, D.A., andJohnson, I.C. 1972. The volatile constituents of the scent gland reservoir of the fruit-spotting bug,Amblypelta nitida.Aust. J. Chem. 25:393–400.Google Scholar
  12. Bigger, M. 1985. The effect of attack byAmblypelta cocophaga China (Hemiptera: coreidae) on growth ofEucalyptus deglupta in the Solomon Islands.Bull. Entomol. Res. 75:595–608.Google Scholar
  13. Brown, E.S. 1958. Injury to cacao byAmblypelta Stal (Hemiptera, Coreidae) with a summary of food-plants of species of this genus.Bull. Entomol. Res. 49:543–554.Google Scholar
  14. Burger, B.V., Munro, Z., Roth, M., Spies, H.S.C., Truter, V., Tribe, G.D., andCrewe, R.M. 1983. Composition of the heterogeneous sex attracting secretion of the dung beetle,Kheper larmarcki.Z. Naturforsch. 38C:848–855.Google Scholar
  15. Cane, D.E., Ha, H.-J., McIlwaine, D.B., andPascoe, K.O. 1990. The synthesis of (3R)-nerolidol.Tetrahedron Lett. 31:7553–7554.Google Scholar
  16. Carayon, J. 1981. Dimorphisme sexuel des glandes tegumentaires et production de phéromones chez les Hémipteres Pentatomoidea.C.R. Acad. Sci. Ser. III 292:867–870.Google Scholar
  17. Carver, M., Gross, G.F., andWoodward, T.E. 1991. Hemiptera (bugs, leafhoppers, cicadas, aphids, scale insects, etc.), pp. 429–509,in I.D. Naumann (ed.). The Insects of Australia. Melbourne University Press, Victoria.Google Scholar
  18. Clausen, C.P. 1978. Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. USDA Handbook No. 480. Washington, D.C. 545 pp.Google Scholar
  19. Donaldson, J.F. 1983. The Australian species ofAmblypelta Stal (Hemiptera: Coreidae).J. Aust. Entomol. Soc. 22:47–52.Google Scholar
  20. Ellis, H.C., Dutcher, J.D., andPickering, J. 1992. Pecan insets,in R.M. McPherson and G.K. Douce (eds.). Summary of Losses from Insect Damage and Costs of Control in Georgia, 1991. Special Publication No. 81. Georgia Agriculture Experiment Station, College of Agriculture and Environmental Science, University of Georgia, Athens.Google Scholar
  21. Games, D.E., andStaddon, B.W. 1973. Chemical expression of a sexual dimorphism in the tubular scent glands of the milkweed bug,Oncopeltus fasciatus (Dallas) (Heteroptera; Lygaeidae).Experientia 29:532–533.Google Scholar
  22. Horton, D., Dutcher, J.D., Ellis, U.C., Payne, J.A., andYonce, C.E. 1992. Peach insects,in R.M. McPherson and G.K. Douce (eds.). Summary of Losses from Insect Damage and Costs of Control in Georgia, 1991. Special Publication No. 81. Georgia Agriculture Experiment Station, College of Agriculture and Environmental Science, University of Georgia, Athens.Google Scholar
  23. Jackson, B.D., Morgan, andBillen, J.P.J. 1990. A note on pygidial glands of primitive Australian ants: A new source of odorous chemicals,in A.R. McCaffery and I.D. Wilson (eds.). Chromatography and Isolation of Insect Hormones and Pheromones. Plenum Press, New York.Google Scholar
  24. Jones, T.G.H., andHarvey, J.M. 1936. Essential oils from the Queensland flora-Part VIII. The identity of melaleucol with nerolidol.Proc. R. Soc. Queensl. 47:92–93.Google Scholar
  25. Kochansky, J.P., Aldrich, J.R., andLusby, W.R. 1989. Synthesis and pheromonal activity of 6,10,13-trimethyl-1-tetradecanol for predatory stink bug,Stiretrus anchorago (Heteroptera: Pentatomidae).J. Chem. Ecol. 15:1717–1728.Google Scholar
  26. Leal, W.S., andKadosawa, T. 1992. (E)-2-Hexenyl hexanoate, the alarm pheromone of the bean bugRiptortus clavatus (Heteroptera: Alydidae).Biosci. Biotech. Biochem. 56:1004–1005.Google Scholar
  27. Leal, W.S.,Kadosawa, T., andNakamori, H. 1993a. Aggregation pheromone of the bean bug,Riptortus clavatus. Proceedings, 37th Annual Meeting of the Japanese Society of Bioscience, Biotechnology and Agrochemistry. p. 212.Google Scholar
  28. Leal, W.S.,Nakamori, H., andKadosawa, T. 1993b. Ecological significance ofRiptortus clavatus aggregation pheromone to adults and nymphs. Proceedings, 37th Annual Meeting of the Society of Applied Entomology and Zoology, p. 9.Google Scholar
  29. Miles, P.W. 1987. Plant-sucking bugs can remove the contents of cells without mechanical damage.Experientia 43:937–939.Google Scholar
  30. Murray, K.E. 1969.α-Farnesene: Isolation from the natural coating of apples.Aust. J. Chem. 22:197–204.Google Scholar
  31. Numata, H., Kon, M., andHidaka, T. 1990. Male adults attract conspecific adults in the bean bug,Riptortus clavatus Thunberg (Heteroptera: Alydidae).Appl. Entomol. Zool. 25:144–145.Google Scholar
  32. Oliver, J.E., Aldrich, J.R., Lusby, W.R., Waters, R.M., andJames, D.G. 1992. A male produced pheromone of the spined citrus bug.Tetrahedron Lett. 33:891–894.Google Scholar
  33. Picker, K., Ritchie, E., Taylor, W.C. 1976. The chemical constituents of AustralianFlindersia species. XXI. An examination of the bark and the leaves ofF. laevicarpa.Aust. J. Chem. 29:2023–2036.Google Scholar
  34. Rucker, G., Langmann, B., andDe Siqueira, N.S. 1981. Inhaltsstoffe vonAristolochia triangularis.Planta Med. 41:143–149.Google Scholar
  35. Schuh, R.T. 1986. The influence of cladistics on heteropteran classification.Annu. Rev. Entomol. 31:67–93.Google Scholar
  36. Smith, R.F., Pierce, H.D., Jr., andBorden, J.H. 1991. Sex pheromone of the mullein bug,Campylomma verbasci (Meyer) (Heteroptera: Miridae).J. Chem. Ecol. 17:1437–1447.Google Scholar
  37. Sutherland, M.D., Webb, L.J., andWells, J.W. 1960. Terpenoid chemistry. III. The essential oils ofEucalyptus deglupta Blume andE. torelliana.Aust. J. Chem. 13:357–366.Google Scholar
  38. Waite, G.K. 1990.Amblypelta spp. (Hemiptera: Coreidae) and green fruit drop in lychees.Trop. Pest Management 36:353–355.Google Scholar
  39. Ward, J.P., andVanDorp, D.A. 1969. A stereospecific synthesis of 4-oxo-2-trans-hexenal.Recueil 88:989–993.Google Scholar
  40. Yasuda, K. 1990. Ecology of the leaf footed bug,Leptoglossus australis Fabricius (Heteroptera: Coreidae), in the sub-tropical region of Japan.Trop. Agricult. Res. Ser. No. 23:229–238.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Jeffrey R. Aldrich
    • 1
  • Geoff K. Waite
    • 2
  • Chris Moore
    • 3
  • Jerry A. Payne
    • 4
  • William R. Lusby
    • 5
  • Jan P. Kochansky
    • 5
  1. 1.Insect Chemical Ecology LaboratoryUSDA-ARS, Bldg 007 Agricultural Research Center-WestBeltsville
  2. 2.Queensland Department of Primary IndustriesMaroochy Horticultural Research StationNambourAustralia
  3. 3.Queensland Department of Primary IndustriesAnimal Research InstituteYeerongpillyAustralia
  4. 4.Southeastern Fruit and Tree Nut Research LaboratoryUSDA-ARSByron
  5. 5.Insect Neurobiology and Hormone LaboratoryUSDA-ARSBeltsville

Personalised recommendations