Skip to main content

Effect of sampling, quantization and noise on the performance of the second directional derivative edge detector

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Berzins [2] and De Vriendt [14] studied the processes that influence the performance of the Laplacian and the second directional derivative edge detector in the continuous domain. In this paper the influence of sampling, quantization and noise is studied in the discrete domain for the second directional derivative edge detector. The results are compared with those for the Laplacian edge detector. The smoothing and derivative operations are implemented by FIR digital filters. Two sampling processes are considered: a square aperture and a Gaussian smoothing process. The influence of sampling can be limited by increasing the spread σ of the smoothing filter. Though, σ should not be chosen too large because of the influence of nearby edges. The quantization of the intensity function introduces an uncertainty in the edge location. The uncertainty is larger than the error due to sampling if the step height is small. We also prove that the second directional derivative is less sensitive to noise than the Laplacian. An increase of σ slightly reduces the variation of the edge location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bergholm, “Edge focusing,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-9, pp. 726–741, 1987.

    Google Scholar 

  2. V. Berzins, “Accuracy of laplacian edge detectors,”Comput. Vision, Graphics and Image Processing, vol. 27, pp. 195–210, 1984.

    Google Scholar 

  3. T.E. Boult and G. Wolberg, “Local image reconstruction and subpixel restoration algorithms,”comput. Vision, Graphics and Image Process., vol. 55, pp. 63–77, 1993.

    Google Scholar 

  4. J. Canny, “A computational approach to edge detection,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, pp. 679–698, 1986.

    Google Scholar 

  5. J.S. Chen, A. Huertas and G. Medioni, “Fast convolution with Laplacian-of-Gaussian masks,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-9, pp. 584–590, 1987.

    Google Scholar 

  6. J.S. Chen and G. Medioni, “Detection, localization and estimation of edges,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-11, pp. 191–198, 1989.

    Google Scholar 

  7. J.J. Clark, “Authentication edges produced by zero-crossing algorithms,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-11, pp. 43–57, 1989.

    Google Scholar 

  8. A. Cumani, “Edge detection in multispectral images,”Comput. Vision Graphics Image Process., vol. 53, 40–51, 1991.

    Google Scholar 

  9. A. Cumani, P. Grattoni and A. Guiducci, “An edge-based description of color images,”Comput. Vision Graphics Image Process., vol. 53, pp. 313–323, 1991.

    Google Scholar 

  10. R. Deriche, “Using Canny's criteria to derive a recursively implemented optimal edge detector,”Int. J. Comput. Vision, vol. 1, pp. 167–187, 1987.

    Google Scholar 

  11. J.A. De Vriendt, “Derivation of the third order directional derivative,”Pattern Recognition Letters, vol. 14, pp. 563–565, July 1993.

    Google Scholar 

  12. J. De Vriendt, “Fast computation of unbiased intensity derivatives in images using separable filters,” Rep CV-9203, 1992, revised version resubmitted to theInternational Journal of Computer Vision.

  13. J. De Vriendt, “Comment on ‘An optimal linear filter for step edge detection’,” Rep CV-9301, 1993, submitted toComputer Vision, Graphics and Image Processing.

  14. J. De Vriendt, “Accuracy of the zero crossing of the second directional derivative edge detector,”Multidi-rectional Systems and Signal Processing, vol. 4, pp. 227–251, 1993.

    Google Scholar 

  15. J.P.F. D'Haeyer, “Gaussian filtering of images: a regularization approach,”Signal Processing, vol. 18, pp. 169–181, 1989.

    Google Scholar 

  16. M.M. Fleck, “Some defects in finite-difference edge finders,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-14, pp. 337–345, 1992.

    Google Scholar 

  17. M.M. Fleck, “Multiple widths yield reliable finite differences,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-14, pp. 412–429, 1992.

    Google Scholar 

  18. W.E.L. Grimson and E.C. Hildreth, “Comments on ‘Digital step edges from zero crossings of second directional derivatives’,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-17, pp. 121–127, 1985.

    Google Scholar 

  19. R.M. Haralick and L. Watson, “A facet model for image date,”Computer Graphics and Image Processing, vol. 15, pp. 113–129, 1981.

    Google Scholar 

  20. R.A. Haralick, “Digital step edges from zero crossings of second directional derivatives,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, pp. 58–68, 1984.

    Google Scholar 

  21. R.A. Haralick “Authors' reply,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-7, pp. 127–129, 1985.

    Google Scholar 

  22. D.I. Havelock, “Geometric precision in noise-free digital images,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-11, pp. 1065–1075, 1989.

    Google Scholar 

  23. M.H. Hueckel, “An operator which locates edges in digitized pictures,”J. ACM, vol. 18, pp. 113–125, 1971.

    Google Scholar 

  24. M.H. Hueckel, “A local visual operator which recognizes edges and lines,”J. ACM, vol. 20, pp. 634–647, 1973.

    Google Scholar 

  25. M.H. Hueckel, “Erratum for ‘A local visual operator which recognizes edges and lines’,”J. ACM, vol. 21, pp. 350, 1974.

    Google Scholar 

  26. A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, pp. 651–664, 1986.

    Google Scholar 

  27. H. Jeong and C.I. Kim, “Adaptive determination of filter scales for edge detection,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-14, 579–585, 1992.

    Google Scholar 

  28. R. Kakarala and A.O. Hero, “On achievable accuracy in edge localization,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-14, pp. 777–781, 1992.

    Google Scholar 

  29. Y. Lu and R.C. Jain, “Reasoning about edges in scale space,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-14, pp. 450–468, 1992.

    Google Scholar 

  30. E.P. Lyvers and O.R. Mitchell, “Precision edge contrast and orientation estimation,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-10, pp. 927–937, 1988.

    Google Scholar 

  31. E.P. Lyvers, O.R. Mitchell, M.L. Akey and A.P. Reeves, “Subpixel measurements using a moment-based edge operator,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-10, pp. 1293–1309, 1989.

    Google Scholar 

  32. S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-14, pp. 710–732, 1992.

    Google Scholar 

  33. D. Marr and E. Hildreth, “Theory of edge detection,”Proc. Roy. Soc. London Ser. B., vol. 207, pp. 187–217, 1980.

    Google Scholar 

  34. V.S. Nalwa and T.O. Binford, “On detecting edges,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, pp. 699–714, 1986.

    Google Scholar 

  35. A.V. Oppenheim and R.W. Schafer,Discrete-Time Signal Processing. Englewood Cliffs: Prentice-Hall International Inc., 1989.

    Google Scholar 

  36. M. Petrou and J. Kittler, “Optimal edge detectors for ramp edges,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-13, pp. 483–491, 1991.

    Google Scholar 

  37. M. Petrou and S. Yusof, “Separable optimal filters for edge detection,”Proc. Image Processing: Theory and Application, Elsevier, pp. 197–200, 1993.

  38. S. Sarkar and K.L. Boyer, “Optimal infinite impulse response zero crossing based edge detectors,”Comput. Vision, Graphics, Image Processing, vol. 54, 224–243, 1991.

    Google Scholar 

  39. S. Sarkar and K.L. Boyer, “On optimal infinite impulse response edge detection filters,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-13, pp. 1154–1171, 1991.

    Google Scholar 

  40. J. Shen and S. Castan, “An optimal linear operator for step edge detection,”Comput. Vision, Graphics and Image Process., vol. 54, pp. 112–133, 1992.

    Google Scholar 

  41. G.E. Sotak and K.L. Boyer, “Comments of ‘Fast convolution with Laplacian-of-Gaussian masks’,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-11, pp. 1329–1332, 1989.

    Google Scholar 

  42. A.J. Tabatabai and O.R. Mitchell, “Edge location to subpixel values in digital imagery,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, pp. 188–201, 1984.

    Google Scholar 

  43. V. Torre and T. Poggio, “On edge detection,”IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, pp. 147–163, 1986.

    Google Scholar 

  44. L. Van Vliet,Grey-Scale Measurements in Multi-Dimensional Digitized Images. Delft: Delft University Press, 1993.

    Google Scholar 

  45. P.W. Verbeek, “A class of sampling-error free measures in oversampled band-limited images,”Pattern Recognition Letters, vol. 3, pp. 287–292, 1985.

    Google Scholar 

  46. T. Vieville and O. Faugeras, “Robust and fast computation of unbiased intensity derivatives in images,”Proc. 2nd European Conference on Computer Vision, Lecture Notes in Computer Science, vol. 588. Berlin, Heidelberg, New York: Springer-Verlag, pp. 203–211, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Belgian National Fund for Scientific Research (NFWO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vriendt, J. Effect of sampling, quantization and noise on the performance of the second directional derivative edge detector. Multidim Syst Sign Process 6, 37–68 (1995). https://doi.org/10.1007/BF00980144

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00980144

Key Words

Navigation