Skip to main content
Log in

Resistance of cereals to aphids: The interaction between hydroxamic acids and UDP-glucose transferases in the aphidSitobion avenue (Homoptera: Aphididae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

UPD-glucose transferases are found in the cytosolic and microsomal fractions of the grain aphidSitobion avenae F. Gel filtration and SDSPAGE revealed that the microsomal fraction contained several forms of the enzyme. The molecular weights of the three most active fractions might be 68,000, 66,000, and 36,500. There was a negative correlation between the enzymes' activity in extracts of aphids and the concentration of DIMBOAaglucone in the winter wheat variety fed on by the aphid. A strong inhibition of the activity of the UPD-glucose transferases was observedin vitro at a concentration of DIMBOA as low as 0.01 mM. There was a greater activity of the enzymes in aphids fed on seedlings of susceptible than on moderately resistant wheat cultivars. Prolonged feeding on resistant cultivars resulted in a further reduction in the activity of the aphid's enzymes. The significance for cereal aphids of the role of their UDP-glucose tranferases in the detoxification of plant allelochemicals and adaptation to resistant varieties of cereals is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S., Brattsten, L.B., Mullin, C.A., andYu, S.J. 1986. Enzymes involved in the metabolism of plant allelochemicals, pp. 73–152,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York and London.

    Google Scholar 

  • Argando¯na, V.H., Luza, J.G., Niemeyer, H.M., andCorcuera, L.J. 1980. Role of hydroxamic acids in the resistance of cereals to aphids.Phytochemistry 19:1665–1668.

    Google Scholar 

  • Argando¯na, V.H., Corcuera, L.J., Niemeyer, H.M., andCampbell, B.C. 1983. Toxicity and feeding deterrancy of hydroxamic acids from Graminae in synthetic diets against the greenbugSchizaphis graminum.Entomol. Exp. Appl. 34: 134–138.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:148–254.

    Google Scholar 

  • Berenbaum, M.R. 1985. Synergistic action among allelochemicals in crop plants, No. 75,in Book of Abstracts, 190th ACS National Meeting, Chicago, Sept. 8–13.

  • Chipoulet, J.M., andChararas, C. 1985. Survey and electrophoretical separation of glucosidases ofRhagium inguistor (Coleoptera: Cerambycidae) larvae.Comp. Biochem. Physiol. 808:241–246.

    Google Scholar 

  • Cuevas, L., Niemeyer, H.M., andPerez, F.J. 1990. Reaction of DIMBOA, a resistance factor from cereals with α-chymotripsin.Phytochemistry 29:1429–1432.

    Google Scholar 

  • Dauterman, W.C. 1985. Insect metabolism: Extramicrosomal, pp. 713–733,in G.A. Kerkut and Gilbert, L.I. (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon Press, New York.

    Google Scholar 

  • Dixon, A.F.G. 1987. Cereal aphids as an applied problem.Agr. Zool. Rev. 2:1–57.

    Google Scholar 

  • Dorough, H.W. 1979. Metabolism of insecticides by conjugation mechanisms.Pharmacol. Ther. 4:433–471.

    Google Scholar 

  • Dreyer, D.L., andJones, K.C. 1981. Feeding deterency of flavonoids and related phenolics towardsSchizaphis graminum andMyzus persicae: Aphid feeding deterrents in wheat.Phytochemistry 20:2489–2493.

    Google Scholar 

  • Fishbein, W.N. 1982. Hydroxamic acids as urease inhibitors for medical and veterinary use, pp. 94–103,in H. Kehl (ed.). Chemistry and Biology of Hydroxamic Acids. Karger, Basel.

    Google Scholar 

  • Harborne, J.B. 1988. Phenolic compounds, pp. 37–39,in J.B. Harborne (ed.). Phytochemical Methods, 2nd ed. Chapman and Hall, London, New York.

    Google Scholar 

  • Katagiri, Ch. 1979.α-Glucosidase in the midgut of the American cockroach,Periplaneta americana.Insect Biochem. 9:205–209.

    Google Scholar 

  • Kent, P.W., andBrunet, P.C.J. 1959. The occurrence of protocatechuic acid and its 4-0-β-D-glucoside inBlatta andPeriplaneta.Tetrahedron 7:252–256.

    Google Scholar 

  • Kjoller, L.I., Sjoberg, B.M., andThelander, L. 1982. Hydroxamic acids and other hydroxylamine derivatives as inhibitors of DNA synthesis, pp. 83–93,in H. Kehl (ed.). Chemistry and Biology of Hydroxamic Acids, Karger, Basel.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T.Nature (London)227:680–685.

    Google Scholar 

  • Leszczynski, B. 1987. Winter wheat resistance in the grain aphidSitobion avenae (Fabr.) (Homoptera, Aphididae).Insect Sci. Appl. 8:251–254.

    Google Scholar 

  • Leszczynski, B., andDixon, A.F.G. 1990. Resistance of cereals to aphids: Interaction between hydroxamic acids and the aphidSitobion avenae (Homoptera: Aphididae).Ann. Appl. Biol. 117:21–30.

    Google Scholar 

  • Leszczynski, B., andDixon, A.F.G. 1992. Resistance of cereals to aphids: The interaction between hydroxamic acids and the glutathione S-transferases in the grain aphidSitobion avanae (Homoptera: Aphididae).J. Appl. Entomol. 113:61–67.

    Google Scholar 

  • Leszczynski, B., Warchol, J., andNiraz, S. 1985. The influence of phenolic compounds on preference of winter wheat cultivars by cereal aphids.Insect Sci. Appl. 6:157–158.

    Google Scholar 

  • Lindroth, R.L. 1988. Hydrolysis of phenolic glucosides by midgutβ-glucosidases inPapilio glaucus subspecies.Insect Biochem. 18:789–792.

    Google Scholar 

  • Lindroth, R.L. 1989. Host plant alteration of detoxyfication activity inPapilio glaucus glaucus.Entomol. Exp. Appl. 50:29–35.

    Google Scholar 

  • Mehendale, H.M., andDorough, H.W. 1972. In vitro glucosylation of 1-naphthol by insects.J. Insect Physiol. 18:981–987.

    Google Scholar 

  • Morello, A., andRepetto, Y. 1979. UDP-glucosyltransferase activity of housefly microsomal fraction.Biochem. J. 177:809–812.

    Google Scholar 

  • Morello, A., Bleeker, W., andAgosin, M. 1971. Cytochrome P-450 and hydroxylating activity of microsomal preparations from houseflies.Biochem. J. 124:199–205.

    Google Scholar 

  • Niemeyer, H.M. 1988. Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones) defense chemicals in the Graminae.Phytochemistry 27:3349–3358.

    Google Scholar 

  • Niemeyer, H.M., Pesel, E., Copaja, S.V., Bravo, H.R., Franke, S., andFrancke, W. 1989a. Changes in hydroxamic acid levels in wheat plants induced by aphid feeding.Phytochemistry 28:447–449.

    Google Scholar 

  • Niemeyer, H.M., Pesel, E., Franke, S., andFrancke, W. 1989b. Ingestion of the benzoxazolinone DIMBOA from wheat plants by aphids.Phytochemistry 28:2307–2310.

    Google Scholar 

  • Perez, F.J., andNiemeyer, H.M. 1989. Reaction of DIMBOA a resistance factor from cereals with papain.Phytochemistry 28:1597–1600.

    Google Scholar 

  • Pridham, J.B. 1960. The formation and possible function of phenolic glucosides, pp. 9–15,in J.B. Pridham (ed.). Proceedings of a Plant Phenolics Group Symposium, Bristol, April. Pergamon Press, Oxford, London, New York, Paris.

    Google Scholar 

  • Queirolo, C.B., Andreo, C.S., Niemeyer, H.M., andCorcuera, L.J. 1983. Inhibition of ATPase from chloroplasts by a hydroxamic acids from the Graminae.Phytochemistry 22:2455–2458.

    Google Scholar 

  • Smith, J.M. 1968. The comparative metabolism of xenobiotics.Adv. Comp. Physiol. Biochem. 3:173–232.

    Google Scholar 

  • Smith, J.M., andTurbert, H.B. 1961. Enzymic glucoside synthesis in locusts.Nature 189:600.

    Google Scholar 

  • Teas, H.J. 1967. Cycasin synthesis inSeirarctia echo (Lepidoptera) larvae fed methylazaxymethanol.Biochem. Biophys. Res. Comm. 26:689–690.

    Google Scholar 

  • Todd, G.W., Getahun, A., andCress, D.C. 1971. Resistance in barley to the greenbugSchizaphis graminum. I. Toxicity of phenolic and flavonoid compounds and related substances.Ann. Entomol. Soc. Am. 64:708–722.

    Google Scholar 

  • Trivelloni, J.C. 1964. Estudio sobre la farmacion deβ-glucosidos en la langosta (Schistocerca cancelata).Enzymologia 26:329–339.

    Google Scholar 

  • Wahlross, O., andVirtanen, A.I. 1959. Precursors of 6-methoxy-benzoxazolinone in maize and wheat plants, their isolation and some of their properties.Acta Chem. Scand. 13:1906–1908.

    Google Scholar 

  • Weber, K., andOsborn, M. 1968. The reliability of molecular weight determination by dodecyl sulphate-polyacrylamide gel electrophoresis.J. Biol. Chem. 244:4406–4412.

    Google Scholar 

  • Yang, R.H.S. 1976. Enzymatic conjugation and insecticide metabolism, pp. 175–225,in C.F. Wilkinson (ed.). Insecticide Biochemistry and Physiology. Plenum, New York.

    Google Scholar 

  • Zu¯niga, G.E., Salgado, M.S., andCorcuera, L.J. 1985. Role of an indole alkaloid in the resistance of barley seedlings to aphids.Phytochemistry 24:945–947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leszczynski, B., Matok, H. & Dixon, A.F.G. Resistance of cereals to aphids: The interaction between hydroxamic acids and UDP-glucose transferases in the aphidSitobion avenue (Homoptera: Aphididae). J Chem Ecol 18, 1189–1200 (1992). https://doi.org/10.1007/BF00980073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00980073

Key Words

Navigation