Advertisement

Journal of Chemical Ecology

, Volume 18, Issue 7, pp 997–1008 | Cite as

Accumulation of the phytoalexin, glyceollin, in root nodules of soybean formed by effective and ineffective strains ofBradyrhizobium japonicum

  • D. B. Karr
  • D. W. Emerich
  • A. L. Karr
Article

Abstract

Nitrogen fixation in root nodules formed by strain 2143 ofBradyrhizobium japonicum andGlycine max (L.) Merr. cv Williams 82 reaches a maximum at 21 to 28 days postinoculation and then begins to decline. The phytoalexin, glyceollin, accumulates in nodules coincident with the decline in nitrogen fixation. Nodules formed by strain 3122, which are unable to fix nitrogen, accumulate even higher levels of glyceollin and do so beginning 21 days postinoculation even though these nodules contain no recoverable bacteria. The typical phytoalexin response occurs within days of infection. The mechanism by which this response in theBradyrhizobium japonicum-soybean combination is delayed 2 to 3 weeks after infection is presently unknown but phytoalexin accumulation could contribute to the inability of the soybean-Bradyrhizobium japonicum combination to maintain high levels of nitrogen fixation throughout the growing season.

Key Words

Nitrogen fixation glyceollin phytoalexin Bradyrhizobium japonicum nodulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullah, A., Baldwin, R.E., Fields, M.L., andKarr, A.L. 1984. Sensory properties and safety aspects of germinated small-seeded soybeans and mungbeans.J. Food Protect. 47:434–439.Google Scholar
  2. Ahmed, S., andEvans, H.J. 1960. Cobalt: A micronutrient element for the growth of soybean plants under symbiotic conditions.Soil Sci. 90:205–210.Google Scholar
  3. Albersheim, P., andValent, B.S. 1978. Host pathogen interactions in plants.J. Cell Biol. 78:627–643.Google Scholar
  4. Boydston, R., Paxton, J.D., andKoeppe, D.E. 1983. Glyceollin: A site-specific inhibitor of electron transport in isolated soybean mitochondria.Plant Physiol. 72:151–155.Google Scholar
  5. Craft-Bradner, S.J., Below, F.E., Harper, J.E., andHageman, R.H. 1984. Effect of pod removal on metabolism and senescence of nodulating and non-nodulating soybean isolines. II. Enzymes and chlorophyll.Plant Physiol. 75:318–322.Google Scholar
  6. Ebel, J., andGrisebach, H. 1988. Defense strategies of soybean against the fungusPhytophthora megasperma f. sp.glycinea: a molecular analysis.Trends Biochem. Sci. 13:23–27.Google Scholar
  7. Emerich, D.W., Ruiiz-Argueso, T., Ching, T.M., andEvans, H.J. 1979. Hydrogen-dependent nitrogenase activity and ATP formation inRhizobium japonicum bacteroids.J. Bacteriol. 137:153–160.Google Scholar
  8. Fett, W.F., andOsman, S.F. 1982. Inhibition of bacteria by the soybean isoflavonoids glyceollin and coumestrol.Phytopathology 72:755–760.Google Scholar
  9. Hahn, M.G., Bonhoff, A., andGrisebach, H. 1985. Quantitative localization of the phytoalexin, glyceollin I, in relation to the fungal hyphae in soybean roots infected withPhytophthora megasperma f.sp.glycinea.Plant Physiol. 77:591–601.Google Scholar
  10. Hollis, A.B., Kloos, W.E., andElkan, G.H. 1981. DNA:DNA hybridization studies ofRhizobium japonicum and related Rhizobiaceae.J. Gen. Microbiol. 123:215–222.Google Scholar
  11. Ingham, J.L. 1982. Phytoalexins fromleguminosae, pp. 21–81,in J.A. Bailey and J.W. Mansfield (eds.). Phytoalexins. Blackies Son, Halsted Press, John Wiley and Sons, New York.Google Scholar
  12. Karr, D.B., Waters, J.K., Suzuki, F., andEmerich, D.W. 1984. Enzymes of the poly-β-hydroxybutyrate and citric acid cycles ofRhizobium japonicum bacteroids.Plant Physiol. 75:1158–1162.Google Scholar
  13. Karr, D.B., andEmerich, D.W. 1988. Uniformity of the microsymbiont population from soybean nodules with respect to buoyant density.Plant Physiol. 86:693–699.Google Scholar
  14. Keen, N.T., andKennedy, B.W. 1974. Hydroxyphaseollin and related isoflavonoids in the hypersensitive resistance reactions of soybeans toPseudomonas glycinea.Physiol. Plant Pathol. 4:173–185.Google Scholar
  15. Keen, N.T., Sims, J.J., Erwin, D.C., Rice, E., andPartridge, J.E. 1971. 6a-hydroxyphaseollin: an antifungal chemical induced in soybean hypocotyls byPhytophthora megasperma varsojae.Phytopathology 61:1084–1089.Google Scholar
  16. Keen, N.T., Zaki, A.I., andSims, J.J. 1972. Biosynthesis of hydroxyphaseollin and related isoflavonoids in disease resistant soybean hypocotyls.Phytochemistry 11:1031–1039.Google Scholar
  17. Kosslak, R.M., Bookland, R., Barrel, J., Paaren, H.E., andApplebaum, E.R. 1987. Induction ofBradyrhizobium japonicum common nod genes by isoflavones isolated fromGlycine max.Proc. Natl. Acad. Sci. USA 84:7428–7432.Google Scholar
  18. Parniske, M., Pausch, G., andWerner, D. 1988. Changes in flavonoid pattern of root hairs ofGlycine max in response to symbiotic infection withBradyrhizobium japonicum, p. 466,in H. Bothe, F.J. de Bruijnm, andW.E. Newton (ed.), Nitrogen Fixation: Hundred Years After. G. Fischer Verlag, Stuttgart.Google Scholar
  19. Parniske, M., Ahlborn, B., andWerner, D. 1991. Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia.J. Bacterial. 173:3432–3439.Google Scholar
  20. Paxton, J. 1980. A new working definition of the term “phytoalexin.”Plant Dis. 64:734.Google Scholar
  21. Peters, N.K., Frost, J.W., andLong, S.R. 1986. A plant flavone, luteolin, induces expression ofRhizobium meliloti nodulation genes.Science 233:977–980.Google Scholar
  22. Schwinghamer, E.A., Evans, H.J., andDawson, M.D. 1970. Evaluation of effectiveness in mutant strains ofRhizobium by acetylene reduction relative to other criteria of nitrogen fixation.Plant Soil 33:192–212.Google Scholar
  23. Skipp, R.A., andBailey, J.A. 1977. The fungitoxicity of isoflavonoid phytoalexins measured using different types of bioassay.Physiol. Plant Pathol. 11:101–112.Google Scholar
  24. Vance, C.P. 1983.Rhizobium infection and nodulation: A beneficial plant disease?Annu. Rev. Microbiol. 37:399–424.Google Scholar
  25. Vincent, J.M. 1970. A Manual for the Practical Study of Root Nodule Bacteria, IBP Handbook No. 15. Blackwell Scientific, Oxford and Edinburgh.Google Scholar
  26. Weinstein, L.I., Hahn, M.G., andAlbersheim, P. 1981. Host-pathogen interactions. XVIII. Isolation and biological activity of glycinol, a pterocarpan phytoalexin synthesized by soybeans.Plant Physiol. 68:358–363.Google Scholar
  27. Werner, D., Mellor, R.B., Hahn, M.G., andGrisebach, H. 1985. Soybean root response to symbiotic infection, glyceollin I accumulation in an ineffective type of soybean nodule with an early loss of the peribacteroid membrane.Z. Naturforsch. 40c: 179–181.Google Scholar
  28. Wittenbach, V.A. 1983. Effect of pod removal on leaf photosynthesis and soluble protein composition of fieldgrown soybeans.Plant Physiol. 73:121–124.Google Scholar
  29. Wong, P.P., andEvans, H.J. 1971. Poly-b-hydroxybutyrate utilization by soybean (Glycine max Merr.) nodules and assessment of its role in maintenance of nitrogenase activity.Plant Physiol. 47:750–755.Google Scholar
  30. Wyman, J.G., andVan Etten, H.D. 1978. Antibacterial activity of selected isoflavonoids.Phytopathology 68:583–589.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • D. B. Karr
    • 1
  • D. W. Emerich
    • 1
  • A. L. Karr
    • 1
  1. 1.Department of Biochemistry Department of Plant Pathology The Interdisciplinary Plant Biochemistry and Physiology GroupUniversity of MissouriColumbia

Personalised recommendations