Journal of Chemical Ecology

, Volume 19, Issue 10, pp 2169–2182 | Cite as

Geometrical and optical isomerism of pheromones in two sympatricDryocoetes species (Coleoptera: Scolytidae), mediates species specificity and response level

  • Alejandro D. Camacho
  • Harold D. PierceJr.
  • John H. Borden
Article

Abstract

In a field-trapping experiment, western balsam bark beetles,Dryocoetes confusus Swaine, were highly attracted to a 5∶1 mixture of (±)-exo-and (±)-endo-brevicomin. Beetles in the sympatric speciesD. affaber (Mann.), were best attracted to a 1∶1 blend of these semiochemicals [either (±)∶(±) or (±)∶(±)], suggesting that both geometrical isomers are pheromone components in these species. In laboratory bioassays and further field experiments, attraction ofD. confusus was greatest when the (+) enantiomers of both geometrical isomers of brevicomin were presented in a 9∶1 ratio. Responses by maleD. confusus to attractive mixtures were reduced in the presence of (−)-exo-brevicomin. Exploitation of the complete range of variability in pheromone structure (both geometrical and optical isomerism) would allow for optimization and regulation of response levels within a species and also could maintain reproductive isolation among sympatric congeneric species primarily through production and response to species-specific blends.

Key Words

Semiochemicals pheromones Dryocoetes confusus Dryocoetes affaber Coleoptera Scolytidae enantiomers diastereoisomers exo-brevicomin endo-brevicomin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, T.C. 1989. Sex pheromone communication in the Lepidoptera: New research progress.Experientia 45:248–262Google Scholar
  2. Birch, M.C. 1984. Aggregation in bark beetles, pp. 331–353,in W.J. Bell, and R.T. Cardé (eds.. Chemical Ecology of Insects. Chapman and Hall, London.Google Scholar
  3. Birch, M.C., andWood, D.L. 1975. Mutual inhibition of the attractant pheromone response by two species ofIps (Coleoptera: Scolytidae).J. Chem. Ecol. 1:101–113Google Scholar
  4. Birch, M.C., Light, D.L., Wood, D.L., Browne, L.E., Silverstein, R.M., Bergot, B.J., Ohloff, G., West, J.R., andYoung, J.C. 1980. Pheromonal attraction and allomonal interuption ofIps pini in California by the two enantiomers of ipsdienol.J. Chem. Ecol, 6:703–717.Google Scholar
  5. Borden, J.H. 1985. Aggregation pheromones, pp. 257–285,in G.A. Kerkut, and L.I. Gilbert (eds.. Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 9. Pergamon Press, Oxford.Google Scholar
  6. Borden, J.H., Chong, L., Mclean, J.A., Slessor, K.N., andMori, K. 1976.Gnathotrichus sulcatus: Synergistic response to enantiomers of the aggregation pheromone sulcatol.Science 192:894–896.PubMedGoogle Scholar
  7. Borden, J.H., Handley, J.R., Mclean, J.A., Silverstein, R.M., Chong, L., Slessor, K.N., Johnston, B.D., andSchuler, H.R. 1980. Enantiomer-based specificity in pheromone communication by two sympatricGnathotrichus species (Coleoptera: Scolytidae).J. Chem. Ecol. 6:445–455Google Scholar
  8. Borden, J.H., Pierce, A.M., Pierce, H.D., Jr., Chong, L.J., Stock, A.J., andOehlschlager, A.C. 1987. Semiochemicals produced by the western balsam bark beetle,Dryocoetes confusus Swaine (Coleoptera: Scolytidae).J. Chem. Ecol. 13:823–836Google Scholar
  9. Brand, J.M., Young, J.C., andSilverstein, R.M. 1979. Insect pheromones: A critical review of recent advances in their chemistry, biology and application.Fortschr. Chem. Org. Naturst. 37:1–190PubMedGoogle Scholar
  10. Butenandt, A., Beckman, R., andStamm, D. 1961. Über den Sexuallockstoff des Seidenspinners. II. Konstitution und Konfiguration des Bombykols.Z. Physiol. Chem. 324:84–87Google Scholar
  11. Byers, J.A. 1983. Bark beetle conversion of a plant compound to a sex-specific inhibitor of pheromone attraction.Science 220:624–626Google Scholar
  12. Byers, J.A. 1988. Novel diffusion-dilution method for release of semiochemicals: Testing pheromone component ratios on western pine beetle.J. Chem. Ecol. 14:199–212Google Scholar
  13. Byers, J.A. 1989. Chemical ecology of bark beetles.Experientia 45:271–283Google Scholar
  14. Byers, J.A., Högberg, H.-E., Unelius, C.R., Birgersson, G., andLöfquist, J. 1989. Structureactivity studies on aggregation pheromone components ofPityogenes chalcographus (Coleoptera: Scolytidae). All stereoisomers of chalcogran and methyl-2,4-decadienoate.J. Chem. Ecol. 15:685–695Google Scholar
  15. Byrne, K.J., Gore, W.E., Pearce, G.T., andSilverstein, R.M. 1975. Porapak-Q collection of airborne organic compounds serving as models for insect pheromones.J. Chem. Ecol. 1:1–7Google Scholar
  16. Cardé, R.T. 1986. The role of pheromones in reproductive isolation and speciation of insects, pp. 303–317,in M.D. Huettel (ed.. Evolutionary Genetics of Invertebrate Behavior. Progress and Prospects. Plenum Press, New York.Google Scholar
  17. Conover, W.J. 1980. Practical Nonparametric Statistics. Wiley, New York.Google Scholar
  18. Cross, J.H., Byler, R.C., Cassidy, R.F., Jr., Silverstein, R.M., Greenblatt, R.E., Burk-Holder, W.E., Levinson, A.R., andLevinson, H.Z. 1976. Porapak Q collection of pheromone components and isolation of (Z)and (E)-14-methyl-8-hexadecenal, sex pheromone components, from the females of four species of Trogoderma (Coleoptera: Dermestidae).J. Chem. Ecol. 2:457–468Google Scholar
  19. Friedman, M. 1937. The use of ranks to avoid the assumptions of normality implicit in the analysis of variance.J. Am. Stat. Assoc. 32:675–701.Google Scholar
  20. Hecker, E. 1958. Isolation and characterization of the sex attractant of the silk worm moth (Bombyx mon L.).Proc. X Int. Congr. Entomol. 2:293–294.Google Scholar
  21. Johnston, B.D., andOehlschlager, A.C. 1982. Facile synthesis of the enantiomers of exo-brevicomin.J. Org. Chem. 47:5384–5386.Google Scholar
  22. Kafka, W.A., Ohloff, G., Schneider, D., andVareschi, E. 1973. Olfactory discrimination of two enantiomers of 4-methyl-hexanoic acid by the migratory locust and the honey bee.J. Comp. Physiol. 87:277–284.Google Scholar
  23. Kohnle, U. 1985. Untersuchungen über die Pheromonsysteme sekundärer Borkenkäfer (Col., Scolytidae).Z. Angew. Entomol. 100:197–218.Google Scholar
  24. Kohnle, U., andVité, J.P. 1984. Bicyclic ketals in the chemical communication of European bark beetles.Naturwissenschaften 71:47.Google Scholar
  25. Lindgren, B.S. 1983. A multiple funnel trap for scolytid bark beetles.Can. Entomol. 115:299–302.Google Scholar
  26. Linn, C.E., Jr., andRoelofs, W.L. 1989. Response specificity of male moths to multicomponent pheromones.Chem. Senses 14:421–437.Google Scholar
  27. Löfquist, J. 1986. Species specificity in response to pheromone substances in diprionid sawflies, pp. 123–129,in T.L. Payne, M.C. Birch, and C.E.J. Kennedy (eds.. Mechanisms in Insect Olfaction. Clarendon Press, Oxford.Google Scholar
  28. Merrill, L.D. 1991. Biological barriers to hybridization in closely related species ofIps (Coleoptera: Scolytidae). PhD thesis. University of California at Berkeley.Google Scholar
  29. Mori, K. 1984. The significance of chirality: Methods for determining absolute configuration and optical purity of pheromones and related compounds, pp. 323–370,in H.E. Hummel and T.A. Miller (eds.. Techniques in Pheromone Research. Springer-Verlag, New York.Google Scholar
  30. Nordlund, D.A. 1981. Semiochemicals: A review of the terminology, pp. 13–28,in D.A. Nordlund, R.L. Jones, and W.J. Lewis (eds.. Semiochemicals. Their Role in Pest Control. Wiley, New York.Google Scholar
  31. Oehlschlager, A.C., andJohnston, B.D. 1987. Synthesis of the enantiomers of endo-brevicomin.J. Org. Chem. 52:940–943.Google Scholar
  32. Payne, T.L., Richerson, J.V., Dickens, J.C., West, J.R., Mori, K., Berisford, C.W., Hedden, R.L., Vité, J.P., andBlum, M.S. 1982. Southern Pine Beetle: Olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin.J. Chem. Ecol. 8:873–881.Google Scholar
  33. Prokopy, R.J., Roitberg, B.D., andAverill, A.L. 1984. Resource partitioning, pp. 301–330,in W.J. Bell and R.T. Cardé (eds.. Chemical Ecology of Insects. Chapman and Hall, London.Google Scholar
  34. Renwick, J.A.A., Hughes, P.R., andKrull, I.S. 1976. Selective production ofcis- andtrans-verbenol from (−)- and (+)-alpha-pinene by a bark beetle.Science 191:199–201.PubMedGoogle Scholar
  35. Richerson, J.V., andPayne, T.L. 1979. Effect of bark beetle inhibitors on landing and attack behavior of the southern bark beetle and beetle associates.Environ. Entomol. 8:360–364.Google Scholar
  36. Riley, R.G., Silverstein, R.M., Katzenellenbogen, J.A., andLenox, R.S. 1974. Improved synthesis of 2-methyl-6-methylene-2,7-octadiene-4-ol, a pheromone ofIps paraconfusus, and an alternative synthesis of the intermediate, 2-bromomethyl-1,3-butadiene.J. Org. Chem. 39:1957–1958. tGoogle Scholar
  37. Rudinsky, J.A. 1969. Masking of the aggregating pheromone inDendroctonus pseudotsugae Hopk.Science 166:884–885.Google Scholar
  38. SAS Institute 1990. SAS System for Personal Computers, Release 6.04. SAS Institute Inc., Cary, North Carolina.Google Scholar
  39. Schlotzhauer, S.D., andLittell, R.C. 1987. SAS System for Elementary Statistical Analysis. SAS Institute Inc., Cary, North Carolina.Google Scholar
  40. Schlyter, F., Byers, J.A., andLöfquist, J.A. 1987. Attraction to pheromone sources of different quantity, quality and spacing: Density-regulation mechanisms in the bark beetleIps typographus.J. Chem. Ecol. 13:1503–1523.Google Scholar
  41. Schurig, V., Weber, R., Nicholson, G.J., Oehlschlager, A.C., Pierce, H.D., Jr., Pierce, A.M., Borden, J.H., andRyker, L.C. 1983. Enantiomer composition of naturalexo- and endo-brevicomin by complexation gas chromatography/selected ion mass spectrometry.Naturwissenschaften 70:92–93.Google Scholar
  42. Silverstein, R.M. 1979. Enantiomeric composition and bioactivity of chiral semiochemicals in insects, pp, 133–146,in F.J. Ritter (ed.. Chemical Ecology: Odour Communication in Animals. Elsevier/North Holland, Amsterdam.Google Scholar
  43. Silverstein, R.M. 1981. Pheromones: Background and potential for use in insect pest control. Science 213:1326–1332.Google Scholar
  44. Silverstein, R.M. 1988. Chirality in insect communication.J. Chem. Ecol. 14:1981–2004.Google Scholar
  45. Silverstein, R.M., Brownlee, R.G., Bellas, T.E., Wood, D.L., andBrowne, L.E. 1968. Brevicomin: principal sex attractant in the frass of the female western pine beetle.Science 159:889–890.PubMedGoogle Scholar
  46. Silverstein, R.M., Cassidy, R.F., Burkholder, W.E., Shapas, T.J., Levinson, H.Z., Levin-Son, A.R., andMori, K. 1980. Perception byTrogoderma species of chirality and methyl branching at a site far removed from a functional group in a pheromone component.J. Chem. Ecol. 6:911–917.Google Scholar
  47. Stock, A.J. 1981. The western balsam bark beetle,Dryocoetes confusus Swaine: Secondary attraction and biological notes. MSc thesis. Simon Fraser University, Burnaby, British Columbia.Google Scholar
  48. Stock, A.J. 1991. The western balsam bark beetle,Dryocoetes confusus Sw.: Impact and semiochemical-based management. PhD thesis. Simon Fraser University, Burnaby, British Columbia.Google Scholar
  49. Stock, A.J., andBorden, J.H. 1983. Secondary attraction in the western balsam bark beetle,Dryocoetes confusus (Coleoptera: Scolytidae).Can. Entomol. 115:539–550.Google Scholar
  50. Stock, A.J., Borden, J.H., Pratt, T.L., Pierce, H.D., Jr., andJohnston, B.D. 1990.endo- Brevicomin: An antiaggregation pheromone for the western balsam bark beetle,Dryocoetes confusus Swaine (Coleoptera: Scolytidae).Can. Entomol. 122:935–940.Google Scholar
  51. Stock, A.J.,Borden, J.H.,Pratt, T.L.,Pierce, H.D., Jr., andJohnston, B.D. 1993. Enantiomeric composition and release rates of exo-brevicomin influence aggregation of the western balsam bark beetle,Dryocoetes confusus Swaine (Coleoptera: Scolytidae).Can. Entomol. In press.Google Scholar
  52. Tumlinson, J.H. 1988. Insect pheromone systems.Comments Agric. Food Chem. 1:115–146Google Scholar
  53. Vité, J.P., Ohloff, G., andBillings, R.F. 1978. Pheromonal chirality and integrity of aggregation response in southern species of the bark beetleIps sp.Nature 272:817–818.Google Scholar
  54. Wood, D.L. 1970. Pheromones of bark beetles, pp. 301–316,in D.L. Wood, R.M. Silverstein, and M. Nakajima (eds.. Control of Insect Behavior by Natural Products. Academic Press, New York.Google Scholar
  55. Wood, D.L., andBushing, R.W. 1963. The olfactory response ofIps confusus (LeConte) (Coleoptera: Scolytidae) to the secondary attraction in the laboratory.Can. Entomol. 95:1066–1078.Google Scholar
  56. Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph.Great Basin Nat. Mem. No. 6.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Alejandro D. Camacho
    • 1
  • Harold D. PierceJr.
    • 2
  • John H. Borden
    • 1
  1. 1.Department of Biological SciencesCentre for Pest ManagementCanada
  2. 2.Department of ChemistrySimon Fraser universityBurnabyCanada

Personalised recommendations