Measurement Techniques

, Volume 38, Issue 2, pp 216–223 | Cite as

Calculation of piezoelectric transducers based on MIM structures

  • V. M. Bogomol'nii
Acoustical Measurements


The conditions for optimal excitation of piezoceramic transducers are determined from the equality of the bias and conduction currents in a metal-polar insulator-metal (MIM) structure under an external electric field. Charge-carrier injection from the cathode is shown to affect the electric field strength distribution along the thickness of the insulator and the integral characteristic, i.e., the capacitance of thin-layer structures. Numerical computation indicates that in the case of piezoceramic plates 0.4–0.5 mm thick electron emission from the cathode is possible at voltages of 5–8 V.


Physical Chemistry Analytical Chemistry Numerical Computation Field Strength Electric Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Lampert and P. Mark, Current Injections in Solids, Academic Press, New York (1970).Google Scholar
  2. 2.
    N. F. Mott and R. Henry, Electronic Processes in Ionic Crystals [Russian translation], Izd. Inostr. Lit., Moscow (1950).Google Scholar
  3. 3.
    Kao Kwan Shi and Huang Wei, Electron Transport in Solids. Part I [Russian translation], Mir, Moscow (1984).Google Scholar
  4. 4.
    D. L. White, J. Appl. Phys.,33, No. 8, 2547 (1962).Google Scholar
  5. 5.
    J. MacPhee, in: W. P. Mason (ed.), Physical Acoustics. Vol. 4A. Applications to Quantum & Solid State Physics, Academic Press, New York (1966).Google Scholar
  6. 6.
    V. I. Pustovoit and M. E. Gerysenshtein, Fiz. Tverd. Tela (Leningrad),6, No. 3, 879 (1964).Google Scholar
  7. 7.
    V. E. Lyamov, Some Aspects of the Interaction of Ultrasonic Waves with Conduction Electrons in Crystals [in Russian], Izd. Akad. Nauk SSSR, Moscow (1965).Google Scholar
  8. 8.
    M. Toda and S. Tosima, Jpn. J. Appl. Phys.,8, No. 2, 207 (1969).Google Scholar
  9. 9.
    M. Matsumura, Jpn. J. Appl. Phys.,8, No. 2, 218 (1969).Google Scholar
  10. 10.
    E. M. Adol'f, B. L. Timan, and M. Sh. Fainer, Fiz. Tekh. Poluprovodn.,14, No. 9, 1823 (1980).Google Scholar
  11. 11.
    K. Uchino, Jpn. J. Appl. Phys.,26, No. 7, 1046 (1987).Google Scholar
  12. 12.
    V. M. Bogomol'nyi, Izmer. Tekh., No. 3, 39 (1992).Google Scholar
  13. 13.
    G. Kossoff, IEEE Trans. Sonics Ultrason.,SU-13, No. 1, 20 (1966).Google Scholar
  14. 14.
    V. M. Gurevich, Electrical Conductivity of Ferroelectrics [in Russian], Izd. Standartov, Moscow (1969).Google Scholar
  15. 15.
    V. P. Dudkevich and E. G. Fesenko, Physics of Ferroelectric Films [in Russian], Izd. Rostov. Univ., Rostov-on-Don (1979).Google Scholar
  16. 16.
    E. V. Kharitonov, Dielectrics with an Inhomogeneous Structure [in Russian], Radio Svyaz', Moscow (1983).Google Scholar
  17. 17.
    L. N. Syrkin and A. M. Él'gard, Izv. Akad. Nauk SSSR. Ser. Fiz.,29, No. 11, 2082 (1965).Google Scholar
  18. 18.
    T. Ogawa, Jpn. Appl. Phys.,9, No. 3, 281 (1970).Google Scholar
  19. 19.
    A. Brather, Colloid. Polymer Sci.,257, No. 7, 725 (1979).Google Scholar
  20. 20.
    S. G. Boev, Élektrichestvo, No. 12, 67 (1984).Google Scholar
  21. 21.
    J. A. Moriarty, J. Appl. Phys.,52, No. 5, 3413 (1981).Google Scholar
  22. 22.
    A. Jonova, R. Valach, and J. Darmo, Electrotech. Casopic.,36, No. 5, 391 (1985).Google Scholar
  23. 23.
    Yu. D. Pankov, “Maxwell relaxation in inhomogeneous insulators and semiconductors,” Author's Abstract of Candidate's Dissertation [in Russian], Gorki (1975).Google Scholar
  24. 24.
    N. A. Trufanov, “Dielectric constant, phase transitions, and semiconductors, ” Author's Abstract of Candidate's Dissertation [in Russian], Moscow (1985).Google Scholar
  25. 25.
    V. Dudkevich, Yu. I. Golovko, V. V. Kuleshov, et al., Semiconductor-Ferroeletrics [in Russian], Izd. Rostov. Univ., Rostov-on-Don (1978).Google Scholar
  26. 26.
    I. N. Ermolov (ed.), Ultrasonic Transducers for Nondestructive Testing [in Russian], Mashinostroenie, Moscow (1986).Google Scholar
  27. 27.
    V. A. V'yun, Akust. Zh.,40, No. 2, 231 (1994).Google Scholar
  28. 28.
    W. Kelly, Practical Applications of Piezoelectricity [Russian translation], Izd. Inostr. Lit., Moscow (1949).Google Scholar
  29. 29.
    S. I. Pugachev (ed.), Piezoceramic Transducers. Methods of Measurement and Calculation of Parameters [in Russian], Sudostroenie, Leningrad (1984).Google Scholar
  30. 30.
    S. A. Mead, Phys. Rev.,128, 2088 (1962).Google Scholar
  31. 31.
    S. A. Mead, Solid-State Electronics,9, No. 11/12, 1023 (1966).Google Scholar
  32. 32.
    J. Shao and G. T. Wright, Solid-State Electronics,3, No.3, 291 (1961).Google Scholar
  33. 33.
    É. I. Adrovich, Fiz. Tverd. Tela (Leningrad),2, No. 7, 1410 (1960).Google Scholar
  34. 34.
    É. I. Adrovich and L. A. Dubrovskii, Dokl. Akad. Nauk SSSR,164, No. 4, 771 (1965).Google Scholar
  35. 35.
    L. A. Dubrovskii, “Currents of unipolar emission in dielectrics,” Author's Abstract of Candidate's Dissertation [in Russian], Tashkent (1967).Google Scholar
  36. 36.
    S. M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, New York (1969).Google Scholar
  37. 37.
    G. N. Watson, Theory of Bessel Functions. Part I [in Russian], Izd. Inostr. Lit., Moscow (1949).Google Scholar
  38. 38.
    K. V. Ber, Izv. Akad, Nauk SSSR. Ser. Fiz.,24, No. 1, 43 (1960).Google Scholar
  39. 39.
    A. E. Gershinskii and É. G. Kostsov, Fiz. Tverd. Tela (Leningrad),10, No. 1, 263 (1968).Google Scholar
  40. 40.
    A. H. M. Shousha, Phys. Lett.,A80, No. 4, 305 (1980).Google Scholar
  41. 41.
    M. Shatzkes, J. Appl. Phys.,49, No. 9, 4868 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. M. Bogomol'nii

There are no affiliations available

Personalised recommendations