Skip to main content
Log in

Prospects for utilizing superionic-conductor noninertial effects in metrology

  • Fundamental Problems in Metrology
  • Published:
Measurement Techniques Aims and scope

Abstract

Information is presented on a group of recently discovered physical effects, united under the general name “noninertial emfs in superionic conductors” and an analysis is made of the possibilities of applying these effects in metrology and measurement technology. It can be expected that these effects and the materials in which they are observed will enable accelerometers to be made having unique parameters, and in particular a sensitivity which is simply and directly related to the atomic constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Tyurin, Introduction to Metrology [in Russian], Standards Publishers, Moscow (1976).

    Google Scholar 

  2. State All-Union Standard GOST 8.021-84 GSI (State System for Maintaining Traceability of Measurements) State Primary Standard and State Verification Scheme for Mass Measuring Instruments [in Russian].

  3. A. B. Mamyrin, N. N. Aruev, and S. A. Alekseenko, Authors' Patent Certificate No. 445901 USSR [in Russian], Byull. Izobret. No. 47 (1975).

  4. I. M. Lifshitz, M. Ya. Azbel', and M. I. Kaganov, Electron Theory of Metals [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  5. B. A. Aronzon, S. D. Lazarev, and E. Z. Meilikhov, Physical Properties of Semiconductor Materials: A Handbook; Preprint No. IAÉ-2304 [in Russian], Institute of Atomic Energy, Moscow (1973).

    Google Scholar 

  6. R. C. Tolman and T. D. Stewart, Phys. Rev.,8, 97 (1916).

    Google Scholar 

  7. S. J. Barnett, Rev. Mod. Phys.,7, 129 (1935).

    Google Scholar 

  8. I. M. Tsidil'kovskii, Usp. Fiz. Nauk,115, 321 (1975).

    Google Scholar 

  9. I. G. Lang and S. T. Pavlov, Fiz. Tverd. Tela (Leningrad),12, 1068 (1970).

    Google Scholar 

  10. M. B. Salamon (ed.), Physics of Superionic Conductors [Russian translation from English], Zinatne, Riga (1982).

    Google Scholar 

  11. V. N. Chebotin, Chemical Diffusion in Solids [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  12. M. E. Kompan, Pis'ma Zh. Eksp. Teor. Fiz.,37, 275 (1983).

    Google Scholar 

  13. M. E. Kompan and N. M. Stel'makh, Pis'ma Zh. Tekh. Fiz.,9, 418 (1983).

    Google Scholar 

  14. Z. Ogorelec, Solid State Commun.,27, 1341 (1978).

    Google Scholar 

  15. N. N. Vershinin, Yu. I. Malov, and E. A. Ukshe, Elektrokhimiya,19, 102 (1983).

    Google Scholar 

  16. M. Betsch, H. Rickert, and R. Wagner, Solid State Ionics Diffus. React.,18–19, 1193 (1986).

    Google Scholar 

  17. W. Koch and H. Rickert, Solid State Ionics Diffus. React.,28–30, 11 and 1664 (1988).

    Google Scholar 

  18. Z. Ogorelec, Phys. Status Solidi B,112, 621 (1982).

    Google Scholar 

  19. M. E. Kompan, Fiz. Tverd. Tela (Leningrad),35, 2049 (1993).

    Google Scholar 

  20. H. Rickert, German Patent No. 3346447.2, December 12, 1983.

  21. J. N. Mgrudich, Proc. Twenty First Annual Power Source Conf., J. Eng. Power, 117 (1967).

  22. A. Cybriwsky, J. Psarothakis, and A. Nitz, Proc. Annual Meeting of ASME, J. Mech. Eng., 1 (1969).

  23. V. P. Obrosov and V. D. Koksharov, Electrokhimiya,12, 673 (1976).

    Google Scholar 

  24. Yu. M. Gerbshtein, E. I. Nikulin, and F. A. Chudnovskii, Fiz. Tverd. Tela (Leningrad),25, 1148 (1983).

    Google Scholar 

  25. A. E. Ukshe and S. A. Sherstnov, Fiz. Tverd. Tela (Leningrad),28, 2850 (1986).

    Google Scholar 

  26. M. A. Korzhuev and A. V. Laptev, Fiz. Tverd. Tela (Leningrad),29, 2646 (1987).

    Google Scholar 

  27. V. L. Ginzburg and Sh. M. Kogan, Zh. Eksp. Teor. Fiz.,61, 1177 (1971).

    Google Scholar 

  28. M. A. Korzhuev, Fiz. Tverd. Tela (Leningrad),30, 2387 (1988).

    Google Scholar 

  29. M. E. Kompan and E. T. Krylov, Elektrokhimiya,28, 1894 (1992).

    Google Scholar 

  30. L. M. Lappets, Chemotronics [in Russian], Voenizdat, Moscow (1968).

    Google Scholar 

Download references

Authors

Additional information

Translated from Izmeritel'naya Tekhnika, No. 8, pp. 3–6, August, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kompan, M.E. Prospects for utilizing superionic-conductor noninertial effects in metrology. Meas Tech 38, 835–841 (1995). https://doi.org/10.1007/BF00978379

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00978379

Keywords

Navigation