Advertisement

Journal of World Prehistory

, Volume 1, Issue 2, pp 127–170 | Cite as

The archaeology of radiocarbon accelerator dating

  • J. A. J. Gowlett
Article

Abstract

Accelerator mass spectrometry (AMS) allows radiocarbon dating to be carried out by direct counting of14C atoms, rather than the conventional counting of radioactive disintegrations. The result is that samples up to 1000 times smaller can be handled. The approach was tested in principle by 1977 and for archaeological operation by 1983. More than 2000 samples per year are now being dated worldwide. The machines can now operate to about ± 80 years or better. Dates older than 40,000 years have not yet been achieved, but the ability to use small samples has already had considerable impact on dating the period 10,000–30,000 years ago. Bone is an ideal material for the new technique, since amino acids can normally be isolated and purified from gram-size samples. Studies of the origins of domestication are aided by the dating of individual grains and seeds. Because small samples can be mobile in the soil, careful sample selection strategies and procedures are required. The full impact of the technique can be assessed only through the rapid and comprehensive publication of archaeological results.

Key words

radiocarbon accelerator mass spectrometry (AMS) sampling dating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, H. R., Ball, G. C., Brown, R. M., Burn, N., Davies, W. G., Imahori, Y., Milton, J. C. D., and Workman, W. (1984). Accelerator mass spectrometry at Chalk River. Proceedings of the Third International Symposium on Accelerator Mass Spectrometry.Nucl. Instr. Methods Phys. Res. 233 (B5) (2): 134–138.Google Scholar
  2. Bada, J. L., and Helfman, P. M. (1975). Amino acid racemization dating of fossil bones.World Archaeol. 7: 160–183.Google Scholar
  3. Bada, J. L., Gillespie, R., Gowlett, J. A. J., and Hedges, R. E. M. (1984). Accelerator mass spectrometry radiocarbon ages of amino acid extracts from Californian Palaeoindian skeletons.Nature 312: 442–444.Google Scholar
  4. Bailey, G. N., Carter, P. L., Gamble, C. S., Higgs, H. P., and Roubet, C. (1983). Palaeolithic investigations in Epirus: The results of the first season's excavations at Klithi, 1983.Annu. Br. School Athens 79.Google Scholar
  5. Bailey, G. N., Carter, P. L., Gamble, C. S., and Higgs, H. S. (1983). Epirus revisited: Seasonality and inter-site variation in the Upper Palaeolithic of north-west Greece. In Bailey, G. N. (ed.),Hunter-Gatherer Economy in Prehistory: A European Perspective, Cambridge University Press, Cambridge.Google Scholar
  6. Bailey, G. N., Gamble, C. S., Higgs, H. P., Roubet, C., Webley, D. P., Gowlett, J. A. J., Sturdy, D. A., and Turner, C. (1986). Dating results from Palaeolithic sites and palaeoenvironments in Epirus (Northwest Greece). In Gowlett, J. A. J., and Hedges, R. E. M. (eds.),Archaeological Results from Accelerator Dating, Oxford University Committee for Archaeology Monograph Series, No. 11, Oxford, pp. 95–107.Google Scholar
  7. Bennet, C. L., Beukens, R. P., Clover, M. R., Gove, H. H., Liebert, R. B., Litheland, A. E., Purser, K. K., and Sondheim, W. E. (1977). Radiocarbon dating using electrostatic accelerators: Negative ions provide the key.Science 198: 508–509.Google Scholar
  8. Berger, R. (1975). Advances and results in radiocarbon dating: Early man in America.World Archaeol. 7: 160–183.Google Scholar
  9. Bill, J., Keller, W. A., Erne, R., Bonani, G., and Wolfli, W. (1984). 14C dating of small archaeological samples: Neolithic to Iron Age in the central Alpine region. Proceedings of the Third International Symposium on Accelerator Mass Spectrometry.Nucl. Instr. Methods Phys. Res. 233 (B5) (2): 317–320.Google Scholar
  10. Bischoff, J. L., and Rosenbauer, R. J. (1981). Uranium series dating of human skeletal remains from the Del Mar and Sunnyvale sites, California.Science 213: 1003–1005.Google Scholar
  11. Bischoff, J. L., Merriam, R., Childers, W. M., and Protsch, R. (1976). Antiquity of man in America indicated by radiometric dates on the Yuha burial site.Nature 261: 128–129.Google Scholar
  12. Bosinski, G. (1969). Der Magdalenien-Fundplatz Feldkirchen-Gönnersdorf, Kr. Neuwied, Grabung 1968.Germania 47: 1–52.Google Scholar
  13. Buchner, A. P. (1981). Sinnock: A Paleolithic camp and kill site in Manitoba. Papers in Manitoba Archaeology, Final Report No. 10.Google Scholar
  14. Burleigh, R. (1974). Radiocarbon dating: Some practical considerations for the archaeologist.J. Archaeol. Sci. 1: 69–87.Google Scholar
  15. Burleigh, R. (1986). Complementarity of conventional and accelerator dating: Examples in Pleistocene extinctions. In Gowlett, J. A. J., and Hedges, R. E. M. (eds.),Archaeological Results from Accelerator Dating, Oxford University Committee for Archaeology Monograph Series, No. 11, Oxford, pp. 95–98.Google Scholar
  16. Burleigh, R., Ambers, J., and Matthews, K. (1984). British Museum natural radiocarbon measurements XVII.Radiocarbon 26(1): 59–74.Google Scholar
  17. Burleigh, R., Leese, M., and Tite, M. (1986). An intercomparison of some AMS and small gas counter laboratories. In Kra, R., and Stuiver, M. (eds.), Proceedings of the 12th International Radiocarbon Conference.Radiocarbon 28(2A): 571–577.Google Scholar
  18. Burleigh, R., Clutton-Brock, J., and Gowlett, J. A. J. (1987). Early domestic equids in Egypt and Western Asia: An additional note. In Meadow, R., and Uerpmann, H.-P. (eds.),Equids in the Ancient World, Vol. 2, TAVO, Tubingen (in press).Google Scholar
  19. Carlisle, R. C., and Adovasio, J. M. (1982).Collected Papers on the Archaeology of Meadowcroft Rockshelter and the Cross Creek Drainage, 7th Annual Meeting of the Society for American Archaeology, Minneapolis.Google Scholar
  20. Clark, J. D. (1981). “New men, strange faces, other minds”: An archaeologist's perspective on recent discoveries relating to the origins and spread of modern man. Mortimer Wheeler Archaeological Lecture 1981.Proc. Br. Acad. 67: 163–192.Google Scholar
  21. Clutton-Brock, J., and Burleigh, R. (1983). Some archaeological applications of the dating of animal bone by radiocarbon with particular reference to post-pleistocene extinctions. In Mook, W. G., and Waterbolk, H. T. (eds.), Proceedings of the First International Symposium on 14C and Archaeology, Groningen, 1981,PACT, Vol.8, pp. 409–418.Google Scholar
  22. Conard, N., Asch, D. L., Asch, N. B., Elmore, D., Gove, H., Rubin, M., Brown, J. A., Wiant, M. D., Farnsworth, K. B., and Cook, T. G. (1984). Accelerator radiocarbon dating of evidence for prehistoric horticulture in Illinois.Nature 308: 443–446.Google Scholar
  23. Dillehey, T. D., Pino, Q. M., Davis, E. M., Valastro, S., Jr., Varela, A. G., and Casamiquela, R. (1982). Monte Verde: Radiocarbon dates from an Early-Man site in south-central Chile.J. Field Archaeol. 9: 547–550.Google Scholar
  24. Donahue, D. J., Zabel, T. H., Jull, A. J. T., Damon, P. E., and Purser, K. (1983). Results of tests and measurements from the NSF Regional Accelerator Facility for Radioisotope Dating.Radiocarbon 25: 719–728.Google Scholar
  25. Evans, J. G., and Simpson, D. D. A. (1986). Radiocarbon dates from Giants' Hills 2 Long Barrow, Skendleby, Lincs. In Gowlett, J. A. J., and Hedges, R. E. M. (eds.),Archaeological Results from Accelerator Dating, Oxford University Committee for Archaeology Monograph Series, No. 11, Oxford, pp. 125–131.Google Scholar
  26. Gillespie, R. (1984).Radiocarbon User's Handbook, Monograph No. 3, Oxford University Committee for Archaeology, Oxford.Google Scholar
  27. Gillespie, R., and Gowlett, J. A. J. (1983). Archaeological sampling for the new generation of radiocarbon techniques.Oxford J. Archaeol. 2(3): 379–382.Google Scholar
  28. Gillespie, R., and Hedges, R. E. M. (1984). Laboratory contamination in radicarbon accelerator mass spectrometry. Proceedings of the Third International Symposium on Accelerator Mass Spectrometry.Nucl. Instr. Methods Phys. Res. 233 (B5) (2): 91–448.Google Scholar
  29. Gillespie, R., Gowlett, J. A. J., Hall, E. T., and Hedges, R. E. M. (1984a). Radiocarbon measurement by accelerator mass spectrometry: An early selection of dates.Archaeometry 26(1): 15–20.Google Scholar
  30. Gillespie, R., Gowlett, J. A. J., and Hedges, R. E. M. (1984b). Recent developments in archaeological dating using an accelerator.Proc. Nucl. Instr. Methods Phys. Res. 233(B5)(2): 308–311.Google Scholar
  31. Gillespie, R., Hedges, R. E. M., and Wand, J. O. (1984c). Radiocarbon dating of bone by accelerator mass spectrometry.J. Archaeol. Sci. 11(1): 165–170.Google Scholar
  32. Gillespie, R., Gowlett, J. A. J., Hall, E. T., and Hedges, R. E. M. (1985). Radiocarbon dates from the Oxford AMS system: Archaeometry Datelist 2.Archaeometry 27(2).Google Scholar
  33. Gowlett, J. A. J. (1983). Contributions to British and European Prehistory: The scope and problems of 14C accelerator dating. In Mook, W. G., and Waterbolk, H. T. (eds.), Proceedings of the First International Symposium on 14C and Archaeology, Groningen, 1981,PACT, Vol.8, pp. 195–203.Google Scholar
  34. Gowlett, J. A. J., and Hedges, R. E. M. (eds.) (1986).Archaeological Results from Accelerator Dating, Oxford University Committee for Archaeology Monograph Series, No. 11. Oxford.Google Scholar
  35. Gowlett, J. A. J., Hall, E. T., Hedges, R. E. M., and Perry, C. (1986). Radiocarbon dates from the Oxford AMS system: Archaeometry Datelist 3.Archaeometry 28(1): 116–125.Google Scholar
  36. Guidon, N. (1983). Contribution à l'étude de l'art rupestre de l'Amerique du Sud.L'Anthropologie 87(2): 257–270.Google Scholar
  37. Hallam, J. S., Edwards, B. J. N., Barnes, B., and Stuart, A. J. (1973). A Late Glacial elk with associated barbed points from High Furlong, Lancashire.Proc. Prehist. Soc. 39: 100–128.Google Scholar
  38. Harbottle, G., Sayre, E. V., and Stoenner, R. W. (1979). Carbon-14 dating of small samples by proportional counting.Science 206 683–685.Google Scholar
  39. Hedges, R. E. M. (1981). Radiocarbon dating with an accelerator: Review and preview.Archaeometry 23(1): 3–18.Google Scholar
  40. Hedges, R. E. M. (1985). Progress in radiocarbon dating.Sci. Prog. Oxford 69: 409–427.Google Scholar
  41. Hedges, R. E. M., and Gowlett, J. A. J. (1984). Accelerating carbon dating.Nature 308: 403–404.Google Scholar
  42. Hedges, R. E. M., and Gowlett, J. A. J. (1986). Radiocarbon dating by accelerator mass spectrometry.Sci. Am. 254: 100–107.Google Scholar
  43. Higgs, E. S., Vita-Finzi, C., Harris, D. R., and Fagg, A. E. (1967). The climate, environment and industries of Stone Age Greece. III.Proc. Prehist. Soc. 33: 1–29.Google Scholar
  44. Hillman, G. C., Robins, G. V., Oduwole, D., Sales, K. D., and McNill, D. A. C. (1985). The use of electron spin resonance spectroscopy to determine the thermal histories of cereal grains.J. Archaeol. Sci. 12: 49–58.Google Scholar
  45. Huxtable, J., and Jacobi, R. M. (1982). Thermoluminescence dating of burned flints from a British Mesolithic site: Longmoor Inclosure, East Hampshire.Archaeometry 24(2): 164–169.Google Scholar
  46. Huyge, D., and Vermeersch, P. M. (1982). Late mesolithic settlement at Weelde-Paardsdrank.Stud. Praehist. Belgica 1: 117–209.Google Scholar
  47. Jacobi, R. M., Gowlett, J. A. J., Hedges, R. E. M., and Gillespie, R. (1986). Accelerator mass spectrometry dating of Upper Palaeolithic finds with the Poulton elk as an example. In Roe, D. A. (eds.),Studies in the Upper Palaeolithic of Britain and Northwest Europe, BAR International Series,296: 121–128.Google Scholar
  48. Jull, A. J. T., Zabel, T. H., Donahue, D. J., and Fireman, E. L. (1984). Accelerator measurements of carbon-14 ages of Antarctic meteorites.Lunar and Planetary Science, Vol. XV, Lunar and Planetary Institute, Houston, pp. 421–422.Google Scholar
  49. Kra, R. and Stuiver, M. (eds.) (1986). Proceedings of the 12th International Radiocarbon Conference, Trondheim 1985.Radiocarbon 28(2A and 2B).Google Scholar
  50. Lanting, J. N., and Mook, W. G. (1977).The Prehistory of the Netherlands in Terms of Radiocarbon Age, University Press, Groningen.Google Scholar
  51. Legge, A. J., and Rowley-Conwy, P. (1986). New radiocarbon dates for early sheep at Tell Abu Hureyra, Syria. In Gowlett, J. A. J., and Hedges, R. E. M. (eds.),Archaeological Results from Accelerator Dating, Oxford University Committee for Archaeology Monograph Series, No. 11, Oxford, pp. 23–35.Google Scholar
  52. Leroi-Gourhan, A. (1979). Lascaux inconnu (Dordogne).Gallia Prehist. Suppl. 12.Google Scholar
  53. Leroi-Gourhan, A., and Brézillon, M. (1972). Fouilles de Pincevent. Essai d'analyse ethnographique d'un habitat magdalénien (La section 36).Gallia Prehist. Suppl. 7.Google Scholar
  54. Libby, W. F. (1952, 1955).Radiocarbon Dating, University of Chicago Press, Chicago.Google Scholar
  55. Litherland, A. E. (1978). Radiocarbon dating with accelerators. In Gover, H. E. (ed.),Proceedings of the First Conference on Radiocarbon Dating with Accelerators, University of Rochester, Rochester, pp. 70–113.Google Scholar
  56. Lynch, T. F. (ed.) (1980).Guitarrero Cave: Early Man in the Andes, Academic Press, New York.Google Scholar
  57. Lynch, T. F. (1983). The Paleo-Indians. In Jennings, J. D. (ed.),Ancient South Americans, Freeman, San Francisco, pp. 87–137.Google Scholar
  58. Lynch, T. F., Gillespie, R., Gowlett, J. A. J., and Hedges, R. E. M. (1985). Chronology of Guitarrero Cave, Peru.Science 229: 864–867.Google Scholar
  59. Mellars, P. A., and Bricker, H. M. (1986). Radiocarbon accelerator dating in the earlier Upper Palaeolithic. In Gowlett, J. A. J., and Hedges, R. E. M. (eds.),Archaeological Results from Accelerator Dating, Oxford University Committee for Archaeology Monograph Series, No. 11, Oxford, pp. 73–80.Google Scholar
  60. Middleton, R. (1984). A review of ion sources for accelerator mass spectrometry. Proceedings of the Third International Symposium on Accelerator Mass Spectrometry.Nucl. Instr. Methods Phys. Res. 233(B5)(2): 193–199.Google Scholar
  61. Mirambell, L. (1978). Tlapacoya: A late Pleistocene site in central Mexico. In Bryan, A. L. (ed.),Early Man in America from a Circum-Pacific Perspective, Occasional Papers No. 1, Department of Anthropology, University of Alberta, Edmonton, pp. 221–230.Google Scholar
  62. Mook, W. G. (1984). Archaeological and geological interest in applying 14C AMS to small samples. Proceedings of the Third International Symposium on Accelerator Mass Spectrometry.Nucl. Instr. Methods Phys. Res. 233 (B5) (2): 297–302.Google Scholar
  63. Nelson, D. E., Korteling, R. G., and Stott, W. R. (1977). Carbon-14: Direct detection at natural concentrations.Science 198: 507–508.Google Scholar
  64. Otlet, R. L., and Evans, G. V. (1983). Progress in the application of miniature gas counters to radiocarbon dating of small samples. In Mook, W. G., and Waterbolk, H. T. (eds.), Proceedings of the First International Symposium on 14C and Archaeology, Groningen, 1981,PACT, Vol.8, pp. 213–222.Google Scholar
  65. Pearson, G. W. (1979). Precise 14C measurement by liquid scintillation counting.Radiocarbon 21: 1–21.Google Scholar
  66. Pearson, G. W. (1980). High precision radiocarbon dating by liquid scintillation counting applied to radiocarbon time-scale calibration.Radiocarbon 22: 337–345.Google Scholar
  67. Pearson, G. W., Pilcher, J. R., and Baillie, M. G. L. (1983). High precision 14C measurement of Irish oaks to show the natural 14C variations from 200 B.C. to 4000 B.C.Radiocarbon 25: 179–186.Google Scholar
  68. Piggott, S. (1962).The West Kennet Long Barrow: Excavations 1955–6, H.M.S.O., London.Google Scholar
  69. Rust, A. (1962). Vor 20,000 Jahren: Rentierjäger der Eiszeit, Karl Wachholtz, Neumünster.Google Scholar
  70. Saville, A. (1984). Preliminary report on the excavation of a Cotswold-Severn tomb at Hazleton, Gloucestershire.Antiq. J. 64(1): 10–24.Google Scholar
  71. Saville, A., Gowlett, J. A. J., and Hedges, R. E. M. (1987). Radiocarbon dates from the chambered tomb at Hazleton (Glos.): a chronology for neolithic collective burial.Antiquity 61: 108–119.Google Scholar
  72. Schmider, B. (1979). Un nouveau facies du Magdalénien final du Bassin Parisien: L'industrie du gisement du Pré-des-Forges, à Marsangy (Yonne). Colloques internationaux du C.N.R.S., No. 271,La fin des temps glaciaires en Europe, Talence 1977, pp. 763–771.Google Scholar
  73. Sealy, J. C., and van der Merwe, N. J. (1985). Isotope assessment of Holocene human diets in the southwestern Cape, South Africa.Nature 315: 138–140.Google Scholar
  74. Shackleton, N. J., and Opdyke, N. D. (1973). Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28–238.Quatern. Res. 3: 39–55.Google Scholar
  75. Sieveking, G. de G. (1971). The Kendrick's Cave mandible.Br. Mus. Q. 35(1–4): 230–250.Google Scholar
  76. Stafford, T. W., Jr., Jull, A. J. T., Zabel, T. H., Donahue, D. J., Duhamel, R. C., Brendel, K., Haynes, C. V., and Taylor, R. E. (1984). Holocene age of the Yuha burial: Direct radiocarbon determinations by accelerator mass spectrometry.Nature 308: 446–447.Google Scholar
  77. Stalker, A. MacS. (1969). Geology and age of the early man site at Taber, Alberta.Am. Antiq. 34: 425–428.Google Scholar
  78. Stanford, D. J. (1982). A critical review of archaeological evidence relating to the antiquity of human occupation of the New World. In Ubelaker, D. H., and Viola, H. J. (eds.),Plains Indians Studies, Smithsonian Contributions to Archaeology, No. 30, Washington, D. C., pp. 202–218.Google Scholar
  79. Stead, I., and Turner, R. C. (1985). Lindow Man.Antiquity 59: 25–29.Google Scholar
  80. Stringer, C. B. (1986). Direct dates for the fossil hominid record. In Gowlett, J. A. J., and Hedges, R. E. M. (eds.),Archaeological Results from Accelerator Dating, Oxford University Committee for Archaeology Monograph Series, No. 11, Oxford, pp. 45–50.Google Scholar
  81. Stringer, C. B., and Burleigh, R. (1981). The Neanderthal problem and the prospects for direct dating of Neanderthal remains.Bull. Br. Mus. (Nat. Hist.) 35(3): 225–241.Google Scholar
  82. Stuiver, M. (1982). A high-precision calibration of the A.D. radiocarbon timescale.Radiocarbon 24: 1–26.Google Scholar
  83. Stuiver, M. (1983). International agreements and the use of the new oxalic acid standard. Proceedings of the 11th International Radiocarbon Conference, Seattle, 1982.Radiocarbon 25: 793–795.Google Scholar
  84. Suter, M., Balzer, R., Bonani, G., Hofmann, H., Morenzoni, E., Nessi, M., Wölfli, W., Andree, M., Beer, J., and Oeschger, H. (1984). Precision measurements of 14C in AMS—some results and prospects. Proceedings of the Third International Symposium on Accelerator Mass Spectrometry.Nucl. Instr. Methods Phys. 233(B5)(2): 117–122.Google Scholar
  85. Taborin, Y., Olive, M., and Pigeot, N. (1979). Les habitats paléolithiques des bords de Seine: Etiolles (Essonne, France). Colloques internationaux du C.N.R.S., No. 271,La fin des temps glaciaires en Europe, Talence 1977, pp. 773–781.Google Scholar
  86. Taylor, R. E., Payen, L. A., Gerow, B., Donahue, D. J., Zabel, T. H., Jull, A. J. T., and Damon, P. E. (1983). Middle Holocene age of the Sunnyvale skeleton.Science 220: 1271–1273.Google Scholar
  87. Taylor, R. E., Payen, L. A., and Slota, P. J., Jr. (1984). Impact of AMS 14C determinations on considerations of the antiquity ofHomo sapiens in the western hemisphere. Proceedings of the Third International Symposium on Accelerator Mass Spectrometry.Nucl. Instr. Methods Phys. Res. 233 (B5) (2): 312–316.Google Scholar
  88. Taylor, R. E., Payen, L. A., Prior, C. A., Slota, P. J., Jr., Gillespie, R., Gowlett, J. A. J., Hedges, R. E. M., Jull, A. J. T., Zabel, T. H., Donahue, D. J., Stafford, T. W., and Berger, R. (1985). Major revisions in the Pleistocene age assignments for North American human skeletons: None older than 11,000 14C years B.P.Am. Antiq. 50(1): 136–140.Google Scholar
  89. Valladas, H. (1981). Datation par thermoluminescence de grés brulés de foyers de quatre gisements du Magdalénien final du Bassin Parisien.C. R. Acad. Sci. Paris (Ser. II)292: 355–358.Google Scholar
  90. Vogel, J. S., Southon, J. R., Nelson, D. E., and Brown, T. A. (1984). Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Proceedings of the Third International Symposium on Accelerator Mass Spectrometry.Nucl. Instr. Methods Phys. Res. 233 (B5) (2): 289–293.Google Scholar
  91. Walker, A. J., R. L., Otlet, and Clark, A. J. (1983). Comments on the application of 14C dating to U.K. archaeology based on experience over a number of years of operating service measurements. In Mook, W. G., and Waterbolk, H. T. (eds.), Proceedings of the First International Symposium on 14C and Archaeology, Groningen, 1981,PACT, Vol.8, pp. 429–439.Google Scholar
  92. Wand, J. O., Gillespie, R., and Hedges, R. E. M. (1984). Sample preparation for accelerator-based radiocarbon dating.J. Archaeol. Sci. 11: 159–163.Google Scholar
  93. Waterbolk, H. T. (1971). Working with radiocarbon dates.Proc. Prehist. Soc. 37(2): 15–33.Google Scholar
  94. Wendorf, F., Schild, R., and Close, A. E. (1980).Loaves and Fishes: The Prehistory of Wadi Kubbaniya, Southern Methodist University Press, Dallas.Google Scholar
  95. Wendorf, F., Schild, R., Close, A. E., Donahue, D. J., Jull, A. J. T., Zabel, T. H., Wieckowska, H., Kobusiewicz, M., Issawi, B., and el Hadidi, N. (1984). New radiocarbon dates on the cereals from Wadi Kubbaniya.Science 225: 645–646Google Scholar
  96. Wölfli, W., Polach, H. A., and Andersen, H. H. (eds.) (1984). Proceedings of the Third International Symposium on Accelerator Mass Spectrometry.Nucl. Instr. Methods Phys. Res. 233 (B5) (2): 91–448.Google Scholar
  97. Wymer, J. J., Jacobi, R. M., and Rose, J. (1975). Late Devensian and Early Flandrian barbed points from Sproughton, Suffolk.Proc. Prehist. Soc. 41: 235–241.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • J. A. J. Gowlett
    • 1
  1. 1.Research Laboratory for ArchaeologyUniversity of OxfordOxfordEngland

Personalised recommendations