Journal of Materials Science

, Volume 29, Issue 5, pp 1233–1238 | Cite as

The properties of a wrought biomedical cobalt-chromium alloy

  • Longquan Shi
  • Derek O. Northwood
  • Zhengwang Cao


Two wrought biomedical cobalt-chromium alloys have been developed, and their mechanical properties and corrosion resistance determined by means of tensile and hardness tests and by electrochemical potential-time curves for isolated specimens in a 6.0 wt% NaCl solution at room temperature. In comparison with a current dental alloy, SC-H, and the basic type 18-8 austenitic stainless steel, it is shown that alloy II (chemical composition in wt%:0.11 C, 22.07 Cr, 15.20 Ni, 3.75 Mo, 9.30 W, balance Co) has superior properties. The alloy has a high strength together with a good ductility which permits adequate workability. Also, both cobalt-chromium alloys show a passive behaviour in 6.0 wt% NaCl solution, whereas the basic type 18-8 austenitic stainless steel shows a fluctuating potential and is thus susceptible to pitting, making it unsuitable for surgical implants.


Polymer Mechanical Property Stainless Steel Ductility Corrosion Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. Taylor,Proc. R. Soc. Lond. 192B (1976) 145.Google Scholar
  2. 2.
    H. S. Dobbs,Engng Med. 7 (1978) 107.Google Scholar
  3. 3.
    R. W. Phillips, in “Skinner's Science of Dental Materials”, 8th Edn (W. B. Saunders Company, Philadelphia, 1982) p. 56 and 557.Google Scholar
  4. 4.
    L. Shi, D. O. Northwood andZ. Cao,J. Mater. Sci. 28 (1993) 1312.Google Scholar
  5. 5.
    Anon, Technical Data, Atlas Stainless Steels and Heat Resisting Steels and Electrical Alloys (Atlas Steels Limited, Welland, Ontario, Canada) p. 8.Google Scholar
  6. 6.
    N. P. Suh andA. P. L. Turner, in “Elements of the Mechanical Behaviour of Solids” (McGraw-Hill, New York, 1975) p. 555.Google Scholar
  7. 7.
    D. C. Mears,Int. Metals Rev. 22 (1977) 119.Google Scholar
  8. 8.
    T. P. Hoar andD. C. Mears,Proc. R. Soc. Lond. 294A (1966) 486.Google Scholar
  9. 9.
    E. Orowan,J. West of Scotland Iron Steel Inst. 54 (1947) 45.Google Scholar
  10. 10.
    H. J. Frost andM. F. Ashby, in “Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics” (Pergamon, Oxford, 1982) p. 153.Google Scholar
  11. 11.
    A. H. Holtzman andG. R. Cowan, in “Response of Metals to High Velocity Deformation”, edited by P. G. Shewnon and V. F. Zackay (Interscience, New York, 1961) p. 447.Google Scholar
  12. 12.
    R. W. K. Honeycombe, “The Plastic Deformation of Metals” (St. Martin's Press, New York, 1968) p. 222.Google Scholar
  13. 13.
    J. F. Bates andA. G. Knapton,Int. Metals Rev. 22 (1977) 39.Google Scholar
  14. 14.
    P. J. Brockhurst,Metals Forum 3 (1980) 200.Google Scholar
  15. 15.
    R. B. Duthie andA. B. Ferguson, Jr., in “Mercer's Orthopaedic Surgery” (Arnold, London, 1973) p. 1159.Google Scholar
  16. 16.
    R. W. Phillips andD. J. Gau, in “Medical Engineering”, edited by C. D. Ray (Year Book Medical Publishers, Chicago, 1974) p. 1146.Google Scholar
  17. 17.
    S. D. Cook, A. M. Weinstein, T. A. Sander andJ. J. Klawitter,Biomater. Med. Dev. Artif. Organs 10 (1982) 123.Google Scholar
  18. 18.
    H. S. Dobbs andJ. L. M. Robertson,J. Mater. Sci. 18 (1983) 391.Google Scholar
  19. 19.
    E. Angelini andF. Zucchi,J. Mater. Sci.: Mater. in Medicine 2 (1991) 27.Google Scholar
  20. 20.
    J. B. Vander Sande, J. R. Coke andJ. Wulff,Metall. Trans. 7A (1976) 389.Google Scholar
  21. 21.
    C. O. Bechtol, A. B. Ferguson andP. G. Laing, in “Metals and Engineering in Bone and Joint Surgery” (Bailliere, Tindall, & Cox, London, 1959) p. 8.Google Scholar
  22. 22.
    K. Asgar andF. A. Peyton,J. Dental Res. 40 (1961) 63.Google Scholar
  23. 23.
    L. Shi, J. Chen andD. O. Northwood,J. Mater. Engng Perform. 1 (1992) 21.Google Scholar
  24. 24.
    N. F. Mott andF. R. N. Nabarro, in “Report of a Conference on Strength of Solids” (Oxford University Press, London, 1948) p. 1.Google Scholar
  25. 25.
    T. B. Massalski, in “Physical Metallurgy”, 3rd Edn, edited by R. W. Cahn and P. Haasen (North-Holland Physics Publishing, Amsterdam, 1983) p. 153.Google Scholar
  26. 26.
    R. P. Reed, in “Alloying”, edited by J. L. Walter, M. R. Jackson and C. T. Sims (ASM Int., Metals Park, Ohio, 1988) p. 225.Google Scholar
  27. 27.
    N. S. Stoloff, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 79.Google Scholar
  28. 28.
    W. F. Smith, in “Structure and Properties of Engineering alloys” (McGraw-Hill, New York, 1981).Google Scholar
  29. 29.
    F. B. Pickering, “Physical Metallurgy and the Design of Steels” (Applied Science, London, 1978).Google Scholar
  30. 30.
    L. M. Brown andR. K. Ham, in “Strengthening Methods in Crystals”, edited by A. Kelly and R. B. Nicholson (Applied Science, London, 1971) p. 9.Google Scholar
  31. 31.
    D. O. Northwood,Mater. Design 6 (1985) 58.Google Scholar
  32. 32.
    W. Hume-Rothery andG. V. Raynor, “The Structure of Metals and Alloys” (Inst. Metals, London, 1956) p. 87.Google Scholar
  33. 33.
    M. G. Fontana andN. D. Greene, “Corrosion Engineering” 2nd Edn (McGraw-Hill, New York, 1978) p. 165 and 437.Google Scholar
  34. 34.
    C. T. Sims,J. Metals 21 (1969) 27.Google Scholar
  35. 35.
    C. T. Sims, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 259.Google Scholar
  36. 36.
    C. T. Sims, in “Superalloys II-High Temperature Materials for Aerospace and Industrial Power”, edited by C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987) p. 217.Google Scholar
  37. 37.
    W. Wallace,J. Metals 9 (1975) 547.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Longquan Shi
    • 1
  • Derek O. Northwood
    • 1
  • Zhengwang Cao
    • 2
    • 3
  1. 1.Engineering Materials Group, Mechanical Engineering DepartmentUniversity of WindsorWindsorCanada
  2. 2.Biomedical Equipment and Materials Group, Department of Materials Science and EngineeringZhejiang UniversityHangzhouP.R. China
  3. 3.Institute of Biomedical Material ResearchHangzhouP.R. China

Personalised recommendations