Neurochemical Research

, Volume 18, Issue 12, pp 1293–1297 | Cite as

Effects of ethanol on brain monoamine content of spontaneously hypertensive rats (SHR)

  • Ying-Ling Wang
  • Jiann-Wu Wei
  • Albert Y. Sun
Original Articles


Spontaneously hypertensive rats (SHR) were administered either 2.4 g/kg ethanol or an isocaloric glucose daily for 4 weeks and the levels of norepinephrine (NE), epinephrine (EP), dopamine (DA), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in different brain regions were determined. Results indicated a 3-fold increase in NE level in brain stem and hypothalamus and more than 2-fold increase in DA in corpus striatum in alcohol-treated rats as compared to controls. There was a significant increase in the level of DA in the corpus striatum but the levels in cerebral cortex, brain stem and hippocampus were decreased instead. Decreases in 5-HT levels were found in hypothalamus, brain stem, cortex and cerebellum of alcohol-treated brain as compared to untreated controls. These results indicate alterations of the biogenic amine contents in different regions of the SHR brain after chronic ethanol ingestion. Since stimulated release of biogenic amines in the SHR brain has been implicated in the regulation of blood pressure, changes due to ethanol ingestion may be a risk factor in hypertensive patients.

Key Words

Spontaneously hypertensive rats (SHR) ethanol biogenic amines catecholamines blood pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deitrich, R. A., Dunwiddie, T. V., Harris R. A., and Erwin G. 1989. Mechanism of action of ethanol: central nervous system action. Pharmacol. Rev. 41:489–537.Google Scholar
  2. 2.
    Hoffman, P. L., Valverins P., Kwast M., and Tabakoff B. 1987. Comparison of the effects of ethanol on beta adrenergic receptors in heart and brain. Alcohol Alcoholism Suppl 1:749–754.Google Scholar
  3. 3.
    Hunt, W. A. 1981. Neurotransmitter function in the basal ganglia after acute and chronic ethanol treatment. Fed. Proc. 40:2077–2081.Google Scholar
  4. 4.
    Pohoresky, L. A. 1981. The interaction of alcohol and stress. A review. Neurosci. Biobehav. Res. 5:208–229.Google Scholar
  5. 5.
    Murphy, J. M., McBride, W. J., Lumeng, L., and Li, T. K. 1982. Regional brain levels of monoamines in alcohol preferring and non-preferring lines of rats. Pharmacol. Biochem. Behav. 16:145–149.Google Scholar
  6. 6.
    Felder, C. C., Campbell, T., Albrecht, F., and Jose, P. A. 1990. Dopamine inhibits Na+−H+ exchanger activity in renal BBMV by stimulation of adenylate cyclase. Am. J. Physiol. 259:F297-F303.Google Scholar
  7. 7.
    Tsuda, K., and Masuyama, Y. 1991. Presynaptic regulation of neurotransmitter release in hypertension. Clin. Exp. Pharmacol. Physiol. 18:455–467.Google Scholar
  8. 8.
    Fuxe, K., Ganten, D., Jonsson, G., Agnati, L. F., Andersson, K., Hokfelt, T., and Raschu, W. 1979. Catecholamine turnover changes in hypothalamus, and dorsal midline area of the caudate medulla oblongata of spontaneously hypertensive rats. Neurosci Lett. 15:283–288.Google Scholar
  9. 9.
    Howes, L. G., Rowe, P. R., Summers, R. J., and Louis W. J. 1984. Age-related changes of catecholamines and their metabolites in central nervous system regions of spontaneously hypertensive and normotensive Wistar Kyoto rats. Clin. Exp. Hypertension 6:2263–2277.Google Scholar
  10. 10.
    Tabakoff, B., and Hoffman, P. 1979. Development of functional dependence on ethanol in dopaminergic system. J. Pharmacol. Expt. Therap. 208:216–222.Google Scholar
  11. 11.
    DeJong, W., Nijkamp, F. P., and Bohus, B. 1975. Role of noradrenaline and serotonin in the central control of blood pressure in normotensive and spontaneously hypertensive rats. Arch. Int. Pharmacolyn Therap. 213:272–284.Google Scholar
  12. 12.
    Howe, P-R. C., West, M. J., Provis, J. S., and Chalmus, J. P. 1981. Content and turnover of noradrenaline in spinal cord and cerebellum of spontaneously hypertensive and stroke prone rats. Eur. J. Pharmacol. 73:123–129.Google Scholar
  13. 13.
    Arkwright, P. D., Beilin L. J., Rouse I., Armstrong, B. K., and Vandongen, R. 1982. Effects of alcohol use and other aspects of lifestyle on blood pressure levels and prevalence of hypertension in a working population. Circulation 66:60–66.Google Scholar
  14. 14.
    Klatsky, A. L., Friedman, G. D., and Armstrong, M. A. 1986. The relationship between alcohol beverage use and other trials to blood pressure: a new Kaiser-Permanente study. Circulation 73:628–636.Google Scholar
  15. 15.
    Russ, R., Abdel-Rahman, A. R., and Wooles, R. 1991. Role of the sympathetic nervous system in ethanol induced hypertension in rats. Alcohol. 8:301–307.Google Scholar
  16. 16.
    Kissinger, P. T., Bruntlett, C. S., Davis, G. C., Felice, L. J., Riggin, R. M., and Shoup, R. E. 1977. Recent developments in the clinical assessment of the metabolism of aromatics by high performance reverse-phase chromatography with aperometric detection. Clin. Chem. 23:1449–1455.Google Scholar
  17. 17.
    Kaneyuki, T., Marimasa, T., Okada, H., and Shohmori, T. 1991. The effect of acute and repeated ehtanol administration on monoamines and their metabolites in brain regions of rats. Acta Med. Okayama. 45:201–208.Google Scholar
  18. 18.
    Wei, J. W., Janis, R. A., and Daniel, E. E. 1976. Calcium accumulation and enzymatic activities of subcellular fractions from aortas and ventricles of genetically hypertensive rats. Circulation Res. 39:133–140.Google Scholar
  19. 19.
    Abrams, W. B. 1984. Blood pressure regulatory mechanism. Hypertension 6 (Suppl. 11):87–93.Google Scholar
  20. 20.
    Barbaccia, M. L., Bosio, A., Lucchi, L., Spano, P. F., and Trabacchi, M. 1982. Neuronal mechanisms regulating ethanol effects on the dopaminergic system. Life Sci. 30:2163–2170.Google Scholar
  21. 21.
    Lai, H., Carino, M. A., and Horita, A. 1980. Effects of ethanol on central dopaminergic functions. Life Sci. 27:299–304.Google Scholar
  22. 22.
    Lucchi, L., Lupini, M., Govoni, S., Covelli, V., Spano, P. F., and Trabucchi, M. 1983. Ethanol and dopaminergic systems. Pharmacol. Biochem. Behav. 18(Suppl 1):379–382.Google Scholar
  23. 23.
    Hruska, R. E. 1988. Effects of ethanol administration on striatal D1 and D2 dopamine receptors. J. Neurochem. 50:1929–1933.Google Scholar
  24. 24.
    Tsuda, K., Tsuda, S., Goldstein, M., and Masuyama, Y. 1990. Effects of neuropeptide on norepinephrine release in hypothalamic slices of spontaneously hypertensive rats. Eur. J. Pharmacol. 182:175–179.Google Scholar
  25. 25.
    Sun, G. Y., and Sun, A. Y. 1985. Ethanol and membrane lipids. Alcoholism: Clin. Exp. Res. 9:164–180.Google Scholar
  26. 26.
    Samson, H. H., and Harris, R. A. 1992. Neurobiology of Alcoholism. TIPS 13:206–211.Google Scholar
  27. 27.
    David-Duffilho, M., Pevnollet, M. G., Sang, H. L., Benlian, P., De Mendenca, M., Grichois, M., Cirillo, M., Meyer, P., and Devynck, M. 1986. Active Na+ and Ca++ transport. Na+−Ca2+ exchange and intracellular Na+ and Ca2+ content in young spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 8(suppl 8):S130-S135.Google Scholar
  28. 28.
    Field, F. P., and Soltis E. E. 1985. Vascular reactivity in the spontaneously hypertensive rats, effect of high pressure stress and extracellular calcium. Hypertension 7:228–235.Google Scholar
  29. 29.
    Ebata, H., Natsume, T., Mitsuhashi, T., and Yaginuma, T. 1991. Reduced calcium sensitivity of dihydropyridine binding to calcium channels in spontaneously hypertensive rats. Hypertension 17:234–241.Google Scholar
  30. 30.
    Berlin, L. J. 1987. Epidemiology of alcohol and hypertension. Adv. Alcohol Substance Abuse 6:69–87.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Ying-Ling Wang
    • 1
  • Jiann-Wu Wei
    • 2
  • Albert Y. Sun
    • 3
  1. 1.Department of AnatomyTaipei Medical CollegeTaipeiTaiwan, Republic of China
  2. 2.Institute of NeuroscienceNational Yang-Ming Medical CollegeTaipeiTaiwan, Republic of China
  3. 3.Department of PharmacologyUniversity of MissouriColumbia

Personalised recommendations