Abstract
Behavioral and pharmacological effects of oral administration ofl-deprenyl in the dog are described. Spontaneous behavior is unaffected at doses below 3 mg/kg while at higher doses there was stereotypical responding. There was evidence of improved cognitive function in animals chronically treated with a 1 mg/kg dose but the effectiveness varied considerably between subjects. Chronic administration produced a dose dependent inhibition in brain, kidney and liver monoamine oxidase B, and had no effect on monoamine oxidase A. There were also dose dependent increases in brain phenylethylamine and in plasma levels of amphetamine. Dog platelets did not have significant levels of MAO-B. Brain dopamine and serotonin metabolism were unaffected byl-deprenyl at doses up to 1 mg/kg. It appears that for the dog, deamination of catecholamines is controlled by MAO-A. Nevertheless, it is suggested thatl-deprenyl serves as a dopaminergic agonist, and there is also evidence that it affects adrenergic transmission. These catecholaminergic actions may account for the effects ofl-deprenyl on behavior and cognitive function.
Similar content being viewed by others
References
Birkmayer, W., Riederer, P., and Youdim, M. B. H. 1982. (−)Deprenyl in the treatment of Parkinson's disease. Clin. Neuropharmacol. 5:195–230.
Knoll, J., Dallo, J., and Yen, T. T. 1989. Striatal dopamine, sexual activity and lifespan. Longevity of rats treated with (−)deprenyl. Life Sci. 45:525–531.
Milgram, N. W., Racine, R. J., Nellis, P., Mendonca, A., and Ivy, G. O. 1990. Maintenance ofl-deprenyl prolongs life in aged male rats. Life Sci 47:415–420.
Knoll, J. 1978. The possible mechanisms of action of (−)deprenyl in Parkinson's disease. J. Neural Transm. 43:177–197.
Glover, V., Elsworth, J. D., and Sandler, M. 1980. Dopamine oxidation and its inhibition by (−)deprenyl in man. J. Neural Transm. Suppl. 16:163–172.
Garrick, N. A., and Murphy, D. L. 1980. Species differences in the deamination of dopamine and other substrates for monoamine oxidase in brain. Neuropharmacol. 72:27–33.
Paterson, I. A., Juorio, A. V., Berry, M. D., and Zhu, M. Y. 1991. Inhibition of monoamine oxidase-B by (−)deprenyl potentiates neuronal responses to dopamine agonists but does not inhibit dopamine catabolism in the rat striatum. J. Pharmacol. Exp. Ther. 258:1010–1026.
Yoshida, T., Yamada, Y., Yamamoto, T., and Kurowa, Y. 1986. Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica, 16:129–136.
Demattei, M., Levi, A. C., and Fariello, R. G. 1986. Neuromelanic pigment in substantia nigra neurons of rats and dogs. Neurosci. Lett. 72:37–42.
Graham, D. G. 1978. Oxidative pathways for catecholamines in the genesis of meuromelanin and cytotoxic quinones. Mol. Pharmacol. 14:633–643.
Bathory, G., Szuts, T., and Magyar, K. 1987. Studies on the melanin affinity of selegiline (deprenyl) and other amphetamine derivatives. Pol. J. Pharmacol. Pharm. 39:195–201.
Wisniewski, H. M., Wegiel, J., Morys, J., Bancher, C., Soltysiak, Z., and Kim, K. S. 1990 Aged dogs: an animal model to study beta-protein amyloidogenesis. Pages 151–168, in Mauer, K., Riederer, P., and Beckmann, H. (Eds), Alzheimer's disease, epidemiology, neuropathology, neurochemistry, and clinics. Springer-Verlag Publishers.
Suzuki, Y., Akiyama, K., and Suu, S. 1978. Lafora-like inclusion bodies in the CNS of aged dogs. Acta Neuropathol. (Berl.) 44:217–222.
Turkish, S., Yu, P. H., and Greenshaw, A. A. 1988. Monoamine oxidase-B inhibition: a comparison of in vivo and ex vivo measures of reversible effects. J. Neural Trans. 74:141–148.
Engberg, B., Elebring, T., and Nissbrandt, H. 1991. Deprenyl (selegiline), a selective mao-b inhibitor with active metabolites-effects on locomotor activity, dopaminergic neurotransmission and firing rate of nigral dopamine neurons. J. Pharmacol. Exp. Ther. 259:841–847.
Head, E., * Milgram, N. W. Changes in spontaneous behavior in the dog following oral administration ofl-Deprenyl. Pharmacology Biochemistry and Behavior, 43, 1992.
Salonen, J. S. 1990. Determination of the amine metabolites of selegiline in biological fluids by capillary gas chromatography. J. Chromatog. 527:163–166.
Wallach, M. B., Angrist, B. M., and Gershon, S. 1971. The comparison of the stereotyped behavior-inducing effects of d- and l- amphetamine in dogs. Comm. Behav. Biol. 6:93–96.
Waldmeier, P. C., Felner, A. E., and Maitre, L. 1981. Longterm effects of selective MAO inhibitors on MAO activity and amine metabolism. Pages 87–102. In Youdim, M. B. H., and Paykel, E. S. (eds.), Monoamine oxidase inhibitors-the state of the art. John Wiley & Sons, New York.
Ekstadt, B., Magyar, K., and Knoll, J. 1979. Does the B form selective monoamine oxidase inhibitor lose selectivity by longterm treatment? Biochem. Pharmacol. 28:919–923.
Piccinin, G. L., Finali, G., Piccirilli, M. 1990. Neuropsychological effects of l-deprenyl in Alzheimer's type dementia. Clin. Neuropharma. 13:147–163.
Tariot, P. N., Sunderland, T., Weingartner, H., Murphy, D. L., Welkowitz, J. A., Thompson, K., and Cohen, R. M. Cognitive effects of l-deprenyl in alzheimer's disease. Psychopharm. 91:489–495.
Sunderland, T., Putnam, K. T., Martinez, R., Mellow, A., Lawlor, B. A., Vitiello, B. Molchan, S., Cohen, R. M., and Weingartner, H. 1992. Cognitive effects of long-term deprenyl and hydergine in Alzheimer's disease patients. Clin. Neuropharmacol. Suppl. 1. 15:161B.
Knoll, J. 1989. The pharmacology of selegiline (−)deprenyl). New aspects. Acta Neurol. Scand. 126:83–91.
Brandeis, R., Sapir, M., Kapon, Y., Borelli, G., Cadel, S., and Valsechhi, B. 1991. Improvement of cognitive function by MAO-B inhibitor l-deprenyl in aged rats. Pharmacol. Biochem. Behav. 39:297–304.
Bartus, R. T., Dean, R. L., and Fleming, D. L. Aging in the rhesus monkey: effects on visual discrimination learning and reversal learning. J. Gerontol. 34:209–219.
Simpson, G. M., Frederickson, E., Palmer, R., Pi, E., Sloane, R. B., and White, K. 1985. Platelet monoamine oxidase inhibition by deprenyl and tranylcypromine: implications for clinical use. Biol. Psychiat. 20:680–684.
Garrick, N. A., Redmond, D. E., and Murphy, D. L. 1979. Primate-rodent monoamine oxidase differences. Pages 251–359. In Singer, T. P., Von Korff, R. W. & Murphy, D. L. (eds.), Monoamine Oxidase; Structure, Function and Altered Functions. Academic Press, New York.
Obata, T., Egashira, T., and Yamanaka, Y. 1987. Evidence for existence of A and B form monoamine oxidase in mitochondria from dog platelets. Japan J. Pharmacol. 44:105–111.
Wu, P. H., and Dyck, L. E. 1976. Microassay for the estimation of monoamine oxidase activity. Anal. Biochem. 72:637–642.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
Karoum, F., Chuang, L.-W., Eisler, T., Calne, D. B., Liebowitz, M. R., Quitkin, F. M., Klien, D. F., and Wyatt, R. J. 1982. Metabolism of (−)deprenyl to amphetamine and methamphetamine may be responsible for deprenyl's therapeutic benefit: a biochemical assessment. Neurol. 32:503–509.
Magyar, K., and Tothfalusi, L. 1984. Pharmacokinetic aspects of deprenyl effects. Pol. J. Pharmacol. Pharm. 36:373–384.
Philips, S. R. 1981. Amphetamine, p-hydroxyamphetamine and B-phenylethylamine in mouse brain and urine after (−)-and (+)deprenyl administration. J. Pharm. Pharmacol 33:739–741.
Reynolds, G. P., Riederer, P., Sandler, M., Jellinger, K., and Seemann, D. Amphetamine and 2-phenylethylamine in post-mortem parkinsonian brain after (−)deprenyl administration. J. Neural Transm. 43:271–277.
Durden, D. A., Davis, B. A., and Boulton, A. A. 1991. Quantification of plasma phenylethylamine by combined gas chromatography-electron capture negative ion-mass spectrometry of the N-acetyl-N-pentafluorobenzoyl derivative. Biol. Mass Spec. 20: 375–381.
Bareggi, S. R., Gomeni, R., and Becker, R. E. 1978. Stereotyped behavior and hyperthermia in dogs: Correlation with the levels of amphetamine and p-hydroxyamphetamine in plasma and CSF. Psychomarmacol. (Berl.) 58:89–94.
Heinonen, E. H., & Lammintausta, R. 1991. A review of the pharmacology of selegiline. Acta Neurol. Scand. 84: Suppl 136:44–59.
Chiueh, C. C., and Moore, K. E. 1974. Relative potencies of d-and l- amphetamine on the release of dopamine from cat brain in vivo. Res. Comm. Chem. Path. Pharmacol. 7:189–199.
Segal, D. S. Behavioral characterization of d- and l-amphetamine.: neurochemical implications. Science 190:475–477.
Wallach, M. B., Angrist, B. M., & Gershon, S. The comparison of stereotyped behavior-inducing effects of d- and l-amphetamine in dogs. Communications in behavioral biology, 6, 93–96. 1971.
Elsworth, J. D., Glover, V., Reynolds, G. P., Sandler, M., Lees, A. J., Phuapradit, P., Shaw, K. M., Stern, G. M., and Kumar, P. 1978. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the cheese effect. Psychopharmacol. 57:33–38.
O'Reilly, R., Davis, B. A., Durden, D. A., Thorpe, L., Machnee, H., and Boulton, A. 1991. Plasma phenylethylamine in schizophrenic patients. Biol. Psychiat. 30:145–150.
Murphy, P., Wu, P. H., Milgram, N. W., and Ivy, G. O. 1993. Monoamine oxidase inhibition by l-deprenyl depends on both sex and route of administration in the rat. Neurochem. Res. 18:1299–1304.
Paterson, I. A., Juorio, A. V., and Boulton, A. A. 1990. 2-Phenylethylamine: a modulator of catecholaminergic transmission in the mammalian central nervous system? Journal of Neurochem. 55:1827–1837.
Squires, R. F. Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: a comparison of eight mammalian species. (1972) Advances in Biochemical Psychopharmacology, 5, Raven Press, New York, pp. 355–370.
Egashira, T., Takano, R., and Yamanaka, Y. 1987. Modulation of neuronal MAO activity, 5-HT uptake and imipramine binding by endogenous substances in dog cerebrospinal fluid. Biochem. Pharmacol. 36:1781–1785.
Johannessen, J. N., Chiueh, C. C., Bacon, J. P., Garrick, N. A., Burns, R. S. Weise, V. K., Kopin, I. J., Parisi, J. E., and Markey, S. P. 1989 Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the dog: effect of pargyline pretreatment. J. Neurochem. 53:582–589.
Zuo, D. M. and Yu, P. H. 1991. High-performance liquid chromatographic procedure for the simultaneous determination of aromatic L-amino acid decarboxylase activity towards 3,4 dihydroxyphenylalanine and 5-hydroxytryptophan. J. Chromatogr. Biomed. Appl. 567:381–388.
Fowler, C. J., Callingham, B. A., Mantle, T. H., and Tipton, K. F. 1978. Monoamine oxidase A and B: a useful concept? Biochem. Pharmacol. 27:97–101.
Murphy, D. L., Redmond, D. E., Garrick, N., and Baulu, J. 1979. Brain region differences and some characteristics of monoamine oxidase type A and B activities in the vervet monkey. Neurochem. Res. 4:53–62.
Kalaria, R. N., Mitchell, M. J., and Harik, S. I. 1988. Monoamine oxidases of the human brain and liver. Brain. 111:1441–1451.
Riederer, P., and Youdim, M. B. H. 1986. Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with l-deprenyl. J. Neurochem. 46:1359–1365.
Zsilla, G., Foldi, P., Held, G., Szkely, A. M., and Knoll, J. 1986. The effect of repeated doses of (−)deprenyl on the dynamics of monoaminergic transmission. Comparison with clorgyline. Pol. J. Pharmacol. Pharm. 328:57–67.
Boulton, A. A., Ivy, G., Davis, B., Durden, D., Juorio, and Yu, P. 1992. Inhibition of MAO-B alters dopamine metabolism in primate caudate. Trans. Amer. Soc. Neurochem., 23, p 225.
Berger, G., Gaspar, P., and Verney, C. 1991. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 14:21–27.
Goldman-Rakic, P. S. and Brown, R. M. 1981. Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6:177–187.
Evans, K. R., and Vaccarino, F. J. 1987. Effects of d- and l-amphetamine on food intake: evidence for a dopaminergic substrate. Pharmacol. Biochem. Beh. 27:649–652.
Arnsten, A. F. T., Cai, J. X., and Goldman-Rakik, P. S. 1988. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J. Neursci.. 8:4287–4298.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Milgram, N.W., Ivy, G.O., Head, E. et al. The effect ofl-deprenyl on behavior, cognitive function, and biogenic amines in the dog. Neurochem Res 18, 1211–1219 (1993). https://doi.org/10.1007/BF00975038
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00975038