Neurochemical Research

, Volume 18, Issue 12, pp 1211–1219 | Cite as

The effect ofl-deprenyl on behavior, cognitive function, and biogenic amines in the dog

  • N. W. Milgram
  • G. O. Ivy
  • E. Head
  • M. P. Murphy
  • P. H. Wu
  • W. W. Ruehl
  • P. H. Yu
  • D. A. Durden
  • B. A. Davis
  • I. A. Paterson
  • A. A. Boulton
Original Articles

Abstract

Behavioral and pharmacological effects of oral administration ofl-deprenyl in the dog are described. Spontaneous behavior is unaffected at doses below 3 mg/kg while at higher doses there was stereotypical responding. There was evidence of improved cognitive function in animals chronically treated with a 1 mg/kg dose but the effectiveness varied considerably between subjects. Chronic administration produced a dose dependent inhibition in brain, kidney and liver monoamine oxidase B, and had no effect on monoamine oxidase A. There were also dose dependent increases in brain phenylethylamine and in plasma levels of amphetamine. Dog platelets did not have significant levels of MAO-B. Brain dopamine and serotonin metabolism were unaffected byl-deprenyl at doses up to 1 mg/kg. It appears that for the dog, deamination of catecholamines is controlled by MAO-A. Nevertheless, it is suggested thatl-deprenyl serves as a dopaminergic agonist, and there is also evidence that it affects adrenergic transmission. These catecholaminergic actions may account for the effects ofl-deprenyl on behavior and cognitive function.

Key Words

l-Deprenyl monoamine oxidase dopamine cognitive function dog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkmayer, W., Riederer, P., and Youdim, M. B. H. 1982. (−)Deprenyl in the treatment of Parkinson's disease. Clin. Neuropharmacol. 5:195–230.Google Scholar
  2. 2.
    Knoll, J., Dallo, J., and Yen, T. T. 1989. Striatal dopamine, sexual activity and lifespan. Longevity of rats treated with (−)deprenyl. Life Sci. 45:525–531.Google Scholar
  3. 3.
    Milgram, N. W., Racine, R. J., Nellis, P., Mendonca, A., and Ivy, G. O. 1990. Maintenance ofl-deprenyl prolongs life in aged male rats. Life Sci 47:415–420.Google Scholar
  4. 4.
    Knoll, J. 1978. The possible mechanisms of action of (−)deprenyl in Parkinson's disease. J. Neural Transm. 43:177–197.Google Scholar
  5. 5.
    Glover, V., Elsworth, J. D., and Sandler, M. 1980. Dopamine oxidation and its inhibition by (−)deprenyl in man. J. Neural Transm. Suppl. 16:163–172.Google Scholar
  6. 6.
    Garrick, N. A., and Murphy, D. L. 1980. Species differences in the deamination of dopamine and other substrates for monoamine oxidase in brain. Neuropharmacol. 72:27–33.Google Scholar
  7. 7.
    Paterson, I. A., Juorio, A. V., Berry, M. D., and Zhu, M. Y. 1991. Inhibition of monoamine oxidase-B by (−)deprenyl potentiates neuronal responses to dopamine agonists but does not inhibit dopamine catabolism in the rat striatum. J. Pharmacol. Exp. Ther. 258:1010–1026.Google Scholar
  8. 8.
    Yoshida, T., Yamada, Y., Yamamoto, T., and Kurowa, Y. 1986. Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica, 16:129–136.Google Scholar
  9. 9.
    Demattei, M., Levi, A. C., and Fariello, R. G. 1986. Neuromelanic pigment in substantia nigra neurons of rats and dogs. Neurosci. Lett. 72:37–42.Google Scholar
  10. 10.
    Graham, D. G. 1978. Oxidative pathways for catecholamines in the genesis of meuromelanin and cytotoxic quinones. Mol. Pharmacol. 14:633–643.Google Scholar
  11. 11.
    Bathory, G., Szuts, T., and Magyar, K. 1987. Studies on the melanin affinity of selegiline (deprenyl) and other amphetamine derivatives. Pol. J. Pharmacol. Pharm. 39:195–201.Google Scholar
  12. 12.
    Wisniewski, H. M., Wegiel, J., Morys, J., Bancher, C., Soltysiak, Z., and Kim, K. S. 1990 Aged dogs: an animal model to study beta-protein amyloidogenesis. Pages 151–168, in Mauer, K., Riederer, P., and Beckmann, H. (Eds), Alzheimer's disease, epidemiology, neuropathology, neurochemistry, and clinics. Springer-Verlag Publishers.Google Scholar
  13. 13.
    Suzuki, Y., Akiyama, K., and Suu, S. 1978. Lafora-like inclusion bodies in the CNS of aged dogs. Acta Neuropathol. (Berl.) 44:217–222.Google Scholar
  14. 14.
    Turkish, S., Yu, P. H., and Greenshaw, A. A. 1988. Monoamine oxidase-B inhibition: a comparison of in vivo and ex vivo measures of reversible effects. J. Neural Trans. 74:141–148.Google Scholar
  15. 15.
    Engberg, B., Elebring, T., and Nissbrandt, H. 1991. Deprenyl (selegiline), a selective mao-b inhibitor with active metabolites-effects on locomotor activity, dopaminergic neurotransmission and firing rate of nigral dopamine neurons. J. Pharmacol. Exp. Ther. 259:841–847.Google Scholar
  16. 16.
    Head, E., * Milgram, N. W. Changes in spontaneous behavior in the dog following oral administration ofl-Deprenyl. Pharmacology Biochemistry and Behavior, 43, 1992.Google Scholar
  17. 17.
    Salonen, J. S. 1990. Determination of the amine metabolites of selegiline in biological fluids by capillary gas chromatography. J. Chromatog. 527:163–166.Google Scholar
  18. 18.
    Wallach, M. B., Angrist, B. M., and Gershon, S. 1971. The comparison of the stereotyped behavior-inducing effects of d- and l- amphetamine in dogs. Comm. Behav. Biol. 6:93–96.Google Scholar
  19. 19.
    Waldmeier, P. C., Felner, A. E., and Maitre, L. 1981. Longterm effects of selective MAO inhibitors on MAO activity and amine metabolism. Pages 87–102. In Youdim, M. B. H., and Paykel, E. S. (eds.), Monoamine oxidase inhibitors-the state of the art. John Wiley & Sons, New York.Google Scholar
  20. 20.
    Ekstadt, B., Magyar, K., and Knoll, J. 1979. Does the B form selective monoamine oxidase inhibitor lose selectivity by longterm treatment? Biochem. Pharmacol. 28:919–923.Google Scholar
  21. 21.
    Piccinin, G. L., Finali, G., Piccirilli, M. 1990. Neuropsychological effects of l-deprenyl in Alzheimer's type dementia. Clin. Neuropharma. 13:147–163.Google Scholar
  22. 22.
    Tariot, P. N., Sunderland, T., Weingartner, H., Murphy, D. L., Welkowitz, J. A., Thompson, K., and Cohen, R. M. Cognitive effects of l-deprenyl in alzheimer's disease. Psychopharm. 91:489–495.Google Scholar
  23. 23.
    Sunderland, T., Putnam, K. T., Martinez, R., Mellow, A., Lawlor, B. A., Vitiello, B. Molchan, S., Cohen, R. M., and Weingartner, H. 1992. Cognitive effects of long-term deprenyl and hydergine in Alzheimer's disease patients. Clin. Neuropharmacol. Suppl. 1. 15:161B.Google Scholar
  24. 24.
    Knoll, J. 1989. The pharmacology of selegiline (−)deprenyl). New aspects. Acta Neurol. Scand. 126:83–91.Google Scholar
  25. 25.
    Brandeis, R., Sapir, M., Kapon, Y., Borelli, G., Cadel, S., and Valsechhi, B. 1991. Improvement of cognitive function by MAO-B inhibitor l-deprenyl in aged rats. Pharmacol. Biochem. Behav. 39:297–304.Google Scholar
  26. 26.
    Bartus, R. T., Dean, R. L., and Fleming, D. L. Aging in the rhesus monkey: effects on visual discrimination learning and reversal learning. J. Gerontol. 34:209–219.Google Scholar
  27. 27.
    Simpson, G. M., Frederickson, E., Palmer, R., Pi, E., Sloane, R. B., and White, K. 1985. Platelet monoamine oxidase inhibition by deprenyl and tranylcypromine: implications for clinical use. Biol. Psychiat. 20:680–684.Google Scholar
  28. 28.
    Garrick, N. A., Redmond, D. E., and Murphy, D. L. 1979. Primate-rodent monoamine oxidase differences. Pages 251–359. In Singer, T. P., Von Korff, R. W. & Murphy, D. L. (eds.), Monoamine Oxidase; Structure, Function and Altered Functions. Academic Press, New York.Google Scholar
  29. 29.
    Obata, T., Egashira, T., and Yamanaka, Y. 1987. Evidence for existence of A and B form monoamine oxidase in mitochondria from dog platelets. Japan J. Pharmacol. 44:105–111.Google Scholar
  30. 30.
    Wu, P. H., and Dyck, L. E. 1976. Microassay for the estimation of monoamine oxidase activity. Anal. Biochem. 72:637–642.Google Scholar
  31. 31.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  32. 32.
    Karoum, F., Chuang, L.-W., Eisler, T., Calne, D. B., Liebowitz, M. R., Quitkin, F. M., Klien, D. F., and Wyatt, R. J. 1982. Metabolism of (−)deprenyl to amphetamine and methamphetamine may be responsible for deprenyl's therapeutic benefit: a biochemical assessment. Neurol. 32:503–509.Google Scholar
  33. 33.
    Magyar, K., and Tothfalusi, L. 1984. Pharmacokinetic aspects of deprenyl effects. Pol. J. Pharmacol. Pharm. 36:373–384.Google Scholar
  34. 34.
    Philips, S. R. 1981. Amphetamine, p-hydroxyamphetamine and B-phenylethylamine in mouse brain and urine after (−)-and (+)deprenyl administration. J. Pharm. Pharmacol 33:739–741.Google Scholar
  35. 35.
    Reynolds, G. P., Riederer, P., Sandler, M., Jellinger, K., and Seemann, D. Amphetamine and 2-phenylethylamine in post-mortem parkinsonian brain after (−)deprenyl administration. J. Neural Transm. 43:271–277.Google Scholar
  36. 36.
    Durden, D. A., Davis, B. A., and Boulton, A. A. 1991. Quantification of plasma phenylethylamine by combined gas chromatography-electron capture negative ion-mass spectrometry of the N-acetyl-N-pentafluorobenzoyl derivative. Biol. Mass Spec. 20: 375–381.Google Scholar
  37. 37.
    Bareggi, S. R., Gomeni, R., and Becker, R. E. 1978. Stereotyped behavior and hyperthermia in dogs: Correlation with the levels of amphetamine and p-hydroxyamphetamine in plasma and CSF. Psychomarmacol. (Berl.) 58:89–94.Google Scholar
  38. 38.
    Heinonen, E. H., & Lammintausta, R. 1991. A review of the pharmacology of selegiline. Acta Neurol. Scand. 84: Suppl 136:44–59.Google Scholar
  39. 39.
    Chiueh, C. C., and Moore, K. E. 1974. Relative potencies of d-and l- amphetamine on the release of dopamine from cat brain in vivo. Res. Comm. Chem. Path. Pharmacol. 7:189–199.Google Scholar
  40. 40.
    Segal, D. S. Behavioral characterization of d- and l-amphetamine.: neurochemical implications. Science 190:475–477.Google Scholar
  41. 41.
    Wallach, M. B., Angrist, B. M., & Gershon, S. The comparison of stereotyped behavior-inducing effects of d- and l-amphetamine in dogs. Communications in behavioral biology, 6, 93–96. 1971.Google Scholar
  42. 42.
    Elsworth, J. D., Glover, V., Reynolds, G. P., Sandler, M., Lees, A. J., Phuapradit, P., Shaw, K. M., Stern, G. M., and Kumar, P. 1978. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the cheese effect. Psychopharmacol. 57:33–38.Google Scholar
  43. 43.
    O'Reilly, R., Davis, B. A., Durden, D. A., Thorpe, L., Machnee, H., and Boulton, A. 1991. Plasma phenylethylamine in schizophrenic patients. Biol. Psychiat. 30:145–150.Google Scholar
  44. 44.
    Murphy, P., Wu, P. H., Milgram, N. W., and Ivy, G. O. 1993. Monoamine oxidase inhibition by l-deprenyl depends on both sex and route of administration in the rat. Neurochem. Res. 18:1299–1304.Google Scholar
  45. 45.
    Paterson, I. A., Juorio, A. V., and Boulton, A. A. 1990. 2-Phenylethylamine: a modulator of catecholaminergic transmission in the mammalian central nervous system? Journal of Neurochem. 55:1827–1837.Google Scholar
  46. 46.
    Squires, R. F. Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: a comparison of eight mammalian species. (1972) Advances in Biochemical Psychopharmacology, 5, Raven Press, New York, pp. 355–370.Google Scholar
  47. 47.
    Egashira, T., Takano, R., and Yamanaka, Y. 1987. Modulation of neuronal MAO activity, 5-HT uptake and imipramine binding by endogenous substances in dog cerebrospinal fluid. Biochem. Pharmacol. 36:1781–1785.Google Scholar
  48. 48.
    Johannessen, J. N., Chiueh, C. C., Bacon, J. P., Garrick, N. A., Burns, R. S. Weise, V. K., Kopin, I. J., Parisi, J. E., and Markey, S. P. 1989 Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the dog: effect of pargyline pretreatment. J. Neurochem. 53:582–589.Google Scholar
  49. 49.
    Zuo, D. M. and Yu, P. H. 1991. High-performance liquid chromatographic procedure for the simultaneous determination of aromatic L-amino acid decarboxylase activity towards 3,4 dihydroxyphenylalanine and 5-hydroxytryptophan. J. Chromatogr. Biomed. Appl. 567:381–388.Google Scholar
  50. 50.
    Fowler, C. J., Callingham, B. A., Mantle, T. H., and Tipton, K. F. 1978. Monoamine oxidase A and B: a useful concept? Biochem. Pharmacol. 27:97–101.Google Scholar
  51. 51.
    Murphy, D. L., Redmond, D. E., Garrick, N., and Baulu, J. 1979. Brain region differences and some characteristics of monoamine oxidase type A and B activities in the vervet monkey. Neurochem. Res. 4:53–62.Google Scholar
  52. 52.
    Kalaria, R. N., Mitchell, M. J., and Harik, S. I. 1988. Monoamine oxidases of the human brain and liver. Brain. 111:1441–1451.Google Scholar
  53. 53.
    Riederer, P., and Youdim, M. B. H. 1986. Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with l-deprenyl. J. Neurochem. 46:1359–1365.Google Scholar
  54. 54.
    Zsilla, G., Foldi, P., Held, G., Szkely, A. M., and Knoll, J. 1986. The effect of repeated doses of (−)deprenyl on the dynamics of monoaminergic transmission. Comparison with clorgyline. Pol. J. Pharmacol. Pharm. 328:57–67.Google Scholar
  55. 55.
    Boulton, A. A., Ivy, G., Davis, B., Durden, D., Juorio, and Yu, P. 1992. Inhibition of MAO-B alters dopamine metabolism in primate caudate. Trans. Amer. Soc. Neurochem., 23, p 225.Google Scholar
  56. 56.
    Berger, G., Gaspar, P., and Verney, C. 1991. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 14:21–27.Google Scholar
  57. 57.
    Goldman-Rakic, P. S. and Brown, R. M. 1981. Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6:177–187.Google Scholar
  58. 58.
    Evans, K. R., and Vaccarino, F. J. 1987. Effects of d- and l-amphetamine on food intake: evidence for a dopaminergic substrate. Pharmacol. Biochem. Beh. 27:649–652.Google Scholar
  59. 59.
    Arnsten, A. F. T., Cai, J. X., and Goldman-Rakik, P. S. 1988. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J. Neursci.. 8:4287–4298.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • N. W. Milgram
    • 1
  • G. O. Ivy
    • 1
  • E. Head
    • 1
  • M. P. Murphy
    • 1
  • P. H. Wu
    • 2
  • W. W. Ruehl
    • 3
  • P. H. Yu
    • 4
  • D. A. Durden
    • 4
  • B. A. Davis
    • 4
  • I. A. Paterson
    • 4
  • A. A. Boulton
    • 4
  1. 1.Life Science Division, Scarborough CampusUniversity of TorontoScarboroughCanada
  2. 2.Department of PharmacologyUniversity of TorontoTorontoCanada
  3. 3.Deprenyl Animal Health Inc.Overland Park
  4. 4.Neuropsychiatric Research, Department of PsychiatryUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations