Advertisement

Siberian Mathematical Journal

, Volume 29, Issue 1, pp 123–133 | Cite as

Completeness and nonminimality of systems of exponentials inLP (−π, π)

  • A. M. Sedletskii
Article
  • 19 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. Levinson, Gap and Density Theorems, Publ. Amer. Math. Soc., New York (1940).Google Scholar
  2. 2.
    B. Ya. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc. (1970).Google Scholar
  3. 3.
    R. Redheffer, “Completeness of sets of complex exponentials,” Adv. Math.,24, 1–622 (1970).Google Scholar
  4. 4.
    A. I. Kheifits, “A characterization of the zeros of certain special classes of entire functions of finite order,” Teor. Funktsii, Funkts. Anal. Prilozhen., No. 9, 3–13 (1968).Google Scholar
  5. 5.
    A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, London-New York (1959).Google Scholar
  6. 6.
    A. M. Sedletskii, “Complete and minimal systems of exponentials in the spaces LP(−π, π), 1≤p≤2,” Tr. Mosk. Energet. Inst., No. 290, 63–69 (1976).Google Scholar
  7. 7.
    A. M. Sedletskii “Excesses of systems, close to one another, of exponentials in LP,” Sib. Mat. Zh.,24, No. 4, 164–175 (1983).Google Scholar
  8. 8.
    A. M. Sedleckii, “An analog of a Hardy-Littlewood theorem for Laplace transform and its applications,” Anal. Math.,11, No. 4, 343–354 (1985).Google Scholar
  9. 9.
    A. M. Sedletskii, “Excesses of systems of exponential functions,” Izv. Akad. Nauk SSSR, Ser. Mat.,44, No. 1, 203–218 (1980).Google Scholar
  10. 10.
    A. M. Sedletskii, “Biorthogonal expansions of functions in series of exponentials on intervals of the real axis,” Usp. Mat. Nauk,37, No. 5, 51–95 (1982).Google Scholar
  11. 11.
    G. Polya, “Über die Nüllstellen gewisser ganzer Funktionen,” Math. Z., Bd. 2, 352–383 (1918).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. M. Sedletskii

There are no affiliations available

Personalised recommendations