Advertisement

Journal of Solution Chemistry

, Volume 23, Issue 11, pp 1227–1246 | Cite as

Deprotonation energetics of adenine, adenosine, 5′-adenosine monophosphate and adenosine triphosphate in water from EMF and spectrophotometric measurements

  • S. Ganguly
  • K. K. Kundu
Article

Abstract

The deprotonation constants of adenine (ADE) [K1 and K2], adenosine (ADO) [K1 and K2], 5′-adenosine monophosphate (5′-AMP) [K1, K2 and K3] and adenosine triphosphate (ATP) [K3 and K4] have been obtained for aqueous soutions from emf measurements on cells such as Pt, H2 (g, 1 atm)/HA(m1), NaA(m2), KI(m3)/AgI-Ag (where HA is the corresponding acid of ADE, ADO, 5′-AMP and ATP) at different temperatures. The pK values were fitted by the temperature equation: pK=AT1+B+CT by the least squares method and the related thermodynamic quantities viz. ΔG o , TΔS o and ΔH o were calculated from the coefficients A, B and C.

Key Words

Deprotonation energetics adenine 5′-adenosine monophosphate adenosine adenosine triphosphate Ag−AgI electrodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.a)
    R. Phillips,Chem. Rev. 66, 501 (1966);Google Scholar
  2. 1.b)
    —,Biochemistry 9, 2022 (1970).Google Scholar
  3. 2.
    R. M. Izatt, J. C. Christensen, and J. H. Rytting,Chem. Rev. 71, 439 (1971).Google Scholar
  4. 3.
    H. S. Harned and R. W. Ehlers,J. Am. Chem. Soc. 54, 1350 (1932).Google Scholar
  5. 4.a)
    K.K. Kundu, D. Jana, and M. N. Das,Electrochim Acta 18, 75 (1973);Google Scholar
  6. 4.b)
    K. K. Kundu, and K. Mazumdar,J. Chem. Soc. Trans. I 71, 1422 (1975).Google Scholar
  7. 5.
    R. M. Bock, N. Ling, S. A. Morell, and S. H. Lipton,Arch. Biochem. Biophys. 62, 253 (1956).Google Scholar
  8. 6.
    H. S. Harned, and B. B. Owen,The Physical Chemistry of Electrolyte Solutions, 3rd edn., (Reinhold, New York, 1958), p. 650.Google Scholar
  9. 7.a)
    H. B. Hetzer, R. A. Robinson, and R. G. Bates,J. Phys. Chem. 68, 1929 (1964);Google Scholar
  10. 7.b)
    R. G. Bates,Electrometric pH Determination (Wiley, New York, 1954), p. 25.Google Scholar
  11. 8.
    S. Glasstone,An Introduction to Electrochemistry (Van Nostrand, Princeton, 1942), p. 146, 320.Google Scholar
  12. 9.
    H. S. Harned and R. A. Robinson,Trans. Faraday Soc. 36, 973 (1940).Google Scholar
  13. 10.
    N. W. Please,Biochem. J. 56, 196 (1954).Google Scholar
  14. 11.a)
    C. H. Rochester,Quart. Rev., 511 (1966);Google Scholar
  15. 11.b)
    C. H. Rochester,Acidity Functions (Academic Press, London, 1970), p. 237.Google Scholar
  16. 12.
    G. Yagil,J. Phys. Chem. 71, 1034 (1967).Google Scholar
  17. 13.
    J. F. Coetzee and C. D. Ritchie,Solute-Solvent Interactions (Marcel Dekker, New York, 1969), p. 192.Google Scholar
  18. 14.
    R. A. Robinson and R. H. Stokes,Electrolyte Solutions (Butterworths, London, 1959), p. 229, 468.Google Scholar
  19. 15.
    L. Pauling,Nature of the Chemical Bond (Cornell University Press, Ithaca, 1960) p. 305.Google Scholar
  20. 16.
    P. O. P. Ts'o,Basic Principles in Nucleic Acid Chemistry (Acaademic Press, London, 1974), p. 473.Google Scholar
  21. 17.
    S. Lewin,J. Chem. Soc. 792 (1964).Google Scholar
  22. 18.
    A. Pullman, B. Pullman, and G. Berthier,C. R. Acad Sci. 243, 380 (1956).Google Scholar
  23. 19.a)
    J. Lang, J. Strum, and R. Zana,J. Phys. Chem. 77, 2629 (1973);Google Scholar
  24. 19.b)
    J. Lang, J. Strum, and R. Zana,J. Phys. Chem. 78, 80 (1974);Google Scholar
  25. 19.c)
    J. Lang, J. Strum, and R. Zana,Biopolymers 10, 2639 (1971).Google Scholar
  26. 20.
    W. Cochran,Acta Crystallogr. 4, 81 (1951).Google Scholar
  27. 21.
    C. D. Jardetzky and O. Jardetzky,J. Am. Chem. Soc. 82, 222 (1960).Google Scholar
  28. 22.
    R. M. Izatt, L. D. Hansen, J. H. Rytting, and J. J. Christensen,J. Am. Chem. Soc. 87, 2760 (1965).Google Scholar
  29. 23.
    K. K. Kundu, P. K. Chattopadhyay, and M. N. Das,J. Chem. Soc. 2034 (1972).Google Scholar
  30. 24.
    H. Talukdar, S. P. Rudra, and K. K. Kundu,Indian J. Chem. 27A, 764 (1988).Google Scholar
  31. 25.
    B. T. Suchorukow, V. I. Poltew, and L. Blumenfeld,Abh. Deut. Akad, 381 (1964).Google Scholar
  32. 26.
    H. F. W. Taylor,J. Chem. Soc. 765 (1948).Google Scholar
  33. 27.
    P. A. Levene, H. S. Simms, and L. W. Bass,J. Biol. Chem. 70, 243 (1926).Google Scholar
  34. 28.a)
    M. M. Taqui Khan and A. E. Martell,J. Am. Chem. Soc. 89, 5585 (1967);Google Scholar
  35. 28.b)
    M. M. Taqui Khan and A. E. Martell,J. Am. Chem. Soc. 88, 668 (1966).Google Scholar
  36. 29.
    R. Phillips, S. J. P. Eisenberg, P. George, and R. J. Rutman,J. Biol. Chem. 240, 4793 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • S. Ganguly
    • 1
  • K. K. Kundu
    • 1
  1. 1.Physical Chemistry LaboratoriesJadavpur UniversityCalcuttaIndia

Personalised recommendations