Advertisement

Journal of Solution Chemistry

, Volume 25, Issue 8, pp 711–729 | Cite as

Ion association of dilute aqueous sodium hydroxide solutions to 600°C and 300 MPa by conductance measurements

  • Patience C. Ho
  • Donald A. Palmer
Article

Abstract

The limiting molar conductances Λ0 and ion association constants of dilute aqueous NaOH solutions (<0.01 mol-kg−1) were determined by electrical conductance measurements at temperatures from 100 to 600°C and pressures up to 300 MPa. The limiting molar conductances of NaOH(aq) were found to increase with increasing temperature up to 300°C and with decreasing water density ρw. At temperatures ≥400°C, and densities between 0.6 to 0.8 g-cm−3, Λ0 is nearly temperature-independent but increases linearly with decreasing density, and then decreases at densities <0.6 g-cm−3. This phenomenon is largely due to the breakdown of the hydrogen-bonded, structure of water. The molal association constants K Am for NaOH( aq ) increase with increasing temperature and decreasing density. The logarithm of the molal association constant can be represented as a function of temperature (Kelvin) and the logarithm of the density of water by
$$\begin{gathered} log K_{Am} = 2.477 - 951.53/T - (9.307 \hfill \\ - 3482.8/T)log \rho _{w } (25 - 600^\circ C) \hfill \\ \end{gathered} $$
which includes selected data taken from the literature, or by
$$\begin{gathered} log K_{Am} = 1.648 - 370.31/T - (13.215 \hfill \\ - 6300.5/T)log \rho _{w } (400 - 600^\circ C) \hfill \\ \end{gathered} $$
which is based solely on results from the present study over this temperature range (and to 300 MPa) where the measurements are most precise.

Key Words

Conductivity aqueous sodium hydroxide ion association temperature pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Noyes,The Electrical Conductivity of Aqueous Solutions, Carnegie Institution of Washington, Washington, D.C., 1907.Google Scholar
  2. 2.
    R. N. Marsh and R. H. Stokes,Aust. J. Chem. 17, 740 (1964).Google Scholar
  3. 3.
    H. Bianchi, H. R. Corti, and R. Fernandez-Prini,J. Solution Chem. 23, 1203 (1994).Google Scholar
  4. 4.
    Yu. M. Lukashov, K. B. Komissarov, B. P. Gdubev, S. N. Smirnov, and E. P. Svistunov,Teploenergetika 22, 78 (1975).Google Scholar
  5. 5.
    P. C. Ho, D. A. Palmer, and R. E. Mesmer,J. Solution Chem. 23, 997 (1994).Google Scholar
  6. 6.
    P. C. Ho and D. A. Palmer,J. Solution Chem. 24, 753 (1995).Google Scholar
  7. 7.
    Y. C. Wu, W. F. Koch, W. J. Hamer, and R. L. Kay,J. Solution Chem. 16, 985 (1987).Google Scholar
  8. 8.
    Y. C. Wu and W. F. Koch,J. Solution Chem. 20, 391 (1991).Google Scholar
  9. 9.
    G. C. Bignold, A. D. Brewer, and B. Heam,Trans. Faraday Soc. 67, 2419 (1971).Google Scholar
  10. 10.
    W. L. Marshall,J. Chem. Eng. Data 32, 221 (1987).Google Scholar
  11. 11.
    P. G. Hill,J. Phys. Chem. Ref. Data 19, 1233 (1990).Google Scholar
  12. 12.
    A. Gierer and K. Wirtz,Ann. Phys. 6, 257 (1949).Google Scholar
  13. 13.
    F. U. Franck,Zeit. Phys. Chem. 8, 192 (1956).Google Scholar
  14. 14.
    B. E. Conway, J. O'M. Bockris, and H. Linton,J. Chem. Phys. 24, 834 (1956).Google Scholar
  15. 15.
    M. Eigen and L. de Maeyer,Proc. R. Soc. London A247, 505 (1958).Google Scholar
  16. 16.
    G. J. Hills, P. J. Ovenden, and D. R. Whitehouse,Discuss. Faraday Soc. 39, 207 (1965).Google Scholar
  17. 17.
    K. Tödheide, inWater, A Comprehensive Treatise, F. Franks, ed., Vol. 1, (Plenum Press, New York 1972) p. 463.Google Scholar
  18. 18.
    S. Lengyel and B. E. Conway,Compr. Treatise Electrochem., Vol. 5, (Plenum Press, New York, 1983) p. 339.Google Scholar
  19. 19.
    D. A. Lown and H. D. Thirsk,Trans. Faraday Soc. 67, 132 (1971).Google Scholar
  20. 20.
    A. Eberz and E. U. Franck,Ber. Bunsenges. Phys. Chem. 99, 1091 (1995).Google Scholar
  21. 21.
    R. M. Fuoss and K.-L. Hsia,Proc. Nat. Acad. Sci. 57, 1550 (1967).Google Scholar
  22. 22.
    R. Fernandez-Prini,Physical Chemistry of Organic Solvent Systems, A. K. Covington and T. Dickinson, eds., (Plenum Press, New York, 1973).Google Scholar
  23. 23.
    J. C. Justice,Compr. Treatise Electrochem, Vol. 5, (Plenum Press, New York, 1983) p. 223.Google Scholar
  24. 24.
    A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 3165 (1965).Google Scholar
  25. 25.
    M. Uematsu and E. U. Franck,J. Phys. Chem. Ref. Data 9, 1291 (1980).Google Scholar
  26. 26.
    K. H. Dudziak and E. U. Franck,Ber. Bunsenges. Phys. Chem. 70, 1120 (1966).Google Scholar
  27. 27.
    L. J. Haar, S. Gallagher, and G. S. Kell,Steam Tables, (Hemisphere, New York, 1984).Google Scholar
  28. 28.
    P. C. Ho and D. A. Palmer, unpublished results.Google Scholar
  29. 29.
    F. G. R. Gimblett and C. B. Monk,Trans. Faraday Soc. 50, 965 (1954).Google Scholar
  30. 30.
    A. V. Plyasunov, A. B. Belonozhko, I. P. Ivanov, and I. L. Khodakovskiy,Geochem. Intl. 25, 77 (1988).Google Scholar
  31. 31.
    E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky,Geochim. Cosmochim. Acta (in press).Google Scholar
  32. 32.
    X. Chen, S. E. Gillespie, J. L. Oscarson, and R. M. Izatt,J. Solution Chem. 21, 803 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Patience C. Ho
    • 1
  • Donald A. Palmer
    • 1
  1. 1.Chemical and Analytical Sciences DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations