Skip to main content
Log in

Ion association of dilute aqueous sodium hydroxide solutions to 600°C and 300 MPa by conductance measurements

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The limiting molar conductances Λ0 and ion association constants of dilute aqueous NaOH solutions (<0.01 mol-kg−1) were determined by electrical conductance measurements at temperatures from 100 to 600°C and pressures up to 300 MPa. The limiting molar conductances of NaOH(aq) were found to increase with increasing temperature up to 300°C and with decreasing water density ρw. At temperatures ≥400°C, and densities between 0.6 to 0.8 g-cm−3, Λ0 is nearly temperature-independent but increases linearly with decreasing density, and then decreases at densities <0.6 g-cm−3. This phenomenon is largely due to the breakdown of the hydrogen-bonded, structure of water. The molal association constants K Am for NaOH( aq ) increase with increasing temperature and decreasing density. The logarithm of the molal association constant can be represented as a function of temperature (Kelvin) and the logarithm of the density of water by

$$\begin{gathered} log K_{Am} = 2.477 - 951.53/T - (9.307 \hfill \\ - 3482.8/T)log \rho _{w } (25 - 600^\circ C) \hfill \\ \end{gathered} $$

which includes selected data taken from the literature, or by

$$\begin{gathered} log K_{Am} = 1.648 - 370.31/T - (13.215 \hfill \\ - 6300.5/T)log \rho _{w } (400 - 600^\circ C) \hfill \\ \end{gathered} $$

which is based solely on results from the present study over this temperature range (and to 300 MPa) where the measurements are most precise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Noyes,The Electrical Conductivity of Aqueous Solutions, Carnegie Institution of Washington, Washington, D.C., 1907.

    Google Scholar 

  2. R. N. Marsh and R. H. Stokes,Aust. J. Chem. 17, 740 (1964).

    Google Scholar 

  3. H. Bianchi, H. R. Corti, and R. Fernandez-Prini,J. Solution Chem. 23, 1203 (1994).

    Google Scholar 

  4. Yu. M. Lukashov, K. B. Komissarov, B. P. Gdubev, S. N. Smirnov, and E. P. Svistunov,Teploenergetika 22, 78 (1975).

    Google Scholar 

  5. P. C. Ho, D. A. Palmer, and R. E. Mesmer,J. Solution Chem. 23, 997 (1994).

    Google Scholar 

  6. P. C. Ho and D. A. Palmer,J. Solution Chem. 24, 753 (1995).

    Google Scholar 

  7. Y. C. Wu, W. F. Koch, W. J. Hamer, and R. L. Kay,J. Solution Chem. 16, 985 (1987).

    Google Scholar 

  8. Y. C. Wu and W. F. Koch,J. Solution Chem. 20, 391 (1991).

    Google Scholar 

  9. G. C. Bignold, A. D. Brewer, and B. Heam,Trans. Faraday Soc. 67, 2419 (1971).

    Google Scholar 

  10. W. L. Marshall,J. Chem. Eng. Data 32, 221 (1987).

    Google Scholar 

  11. P. G. Hill,J. Phys. Chem. Ref. Data 19, 1233 (1990).

    Google Scholar 

  12. A. Gierer and K. Wirtz,Ann. Phys. 6, 257 (1949).

    Google Scholar 

  13. F. U. Franck,Zeit. Phys. Chem. 8, 192 (1956).

    Google Scholar 

  14. B. E. Conway, J. O'M. Bockris, and H. Linton,J. Chem. Phys. 24, 834 (1956).

    Google Scholar 

  15. M. Eigen and L. de Maeyer,Proc. R. Soc. London A247, 505 (1958).

    Google Scholar 

  16. G. J. Hills, P. J. Ovenden, and D. R. Whitehouse,Discuss. Faraday Soc. 39, 207 (1965).

    Google Scholar 

  17. K. Tödheide, inWater, A Comprehensive Treatise, F. Franks, ed., Vol. 1, (Plenum Press, New York 1972) p. 463.

    Google Scholar 

  18. S. Lengyel and B. E. Conway,Compr. Treatise Electrochem., Vol. 5, (Plenum Press, New York, 1983) p. 339.

    Google Scholar 

  19. D. A. Lown and H. D. Thirsk,Trans. Faraday Soc. 67, 132 (1971).

    Google Scholar 

  20. A. Eberz and E. U. Franck,Ber. Bunsenges. Phys. Chem. 99, 1091 (1995).

    Google Scholar 

  21. R. M. Fuoss and K.-L. Hsia,Proc. Nat. Acad. Sci. 57, 1550 (1967).

    Google Scholar 

  22. R. Fernandez-Prini,Physical Chemistry of Organic Solvent Systems, A. K. Covington and T. Dickinson, eds., (Plenum Press, New York, 1973).

    Google Scholar 

  23. J. C. Justice,Compr. Treatise Electrochem, Vol. 5, (Plenum Press, New York, 1983) p. 223.

    Google Scholar 

  24. A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 3165 (1965).

    Google Scholar 

  25. M. Uematsu and E. U. Franck,J. Phys. Chem. Ref. Data 9, 1291 (1980).

    Google Scholar 

  26. K. H. Dudziak and E. U. Franck,Ber. Bunsenges. Phys. Chem. 70, 1120 (1966).

    Google Scholar 

  27. L. J. Haar, S. Gallagher, and G. S. Kell,Steam Tables, (Hemisphere, New York, 1984).

    Google Scholar 

  28. P. C. Ho and D. A. Palmer, unpublished results.

  29. F. G. R. Gimblett and C. B. Monk,Trans. Faraday Soc. 50, 965 (1954).

    Google Scholar 

  30. A. V. Plyasunov, A. B. Belonozhko, I. P. Ivanov, and I. L. Khodakovskiy,Geochem. Intl. 25, 77 (1988).

    Google Scholar 

  31. E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky,Geochim. Cosmochim. Acta (in press).

  32. X. Chen, S. E. Gillespie, J. L. Oscarson, and R. M. Izatt,J. Solution Chem. 21, 803 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, P.C., Palmer, D.A. Ion association of dilute aqueous sodium hydroxide solutions to 600°C and 300 MPa by conductance measurements. J Solution Chem 25, 711–729 (1996). https://doi.org/10.1007/BF00973780

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973780

Key Words

Navigation