Neurochemical Research

, Volume 1, Issue 3, pp 275–298 | Cite as

Brain lysosomal hydrolases: I. Solubilization and electrophoretic behavior of acid hydrolases in nerve-ending and mitochondrial-lysosomal fractions from rat brain. Effects of autolysis, neuraminidase, and storage

  • Abdussamad Patel
  • Harold Koenig


In solubility studies of 7 acid hydrolases, the extent of solubilization by sonic disruption varied with the enzyme species and increased with increasing pH and Triton X-100 concentration of the suspension medium. Hydrolases in the nerve-ending (NE) fraction were more resistant to solubilization than those in the mitochondrial-lysosomal (M-L) fraction, but nearly quantitative solubilization was attained by sonication in an alkaline buffer containing 0,5% Triton X-100. Polyacrylamide gel electrophoresis of extracts revealed multiple components of acid phosphatase, acid esterase, arylsulfatase,β-glucuronidase, andβ-N-acetyl-hexosaminidase. The enzyme patterns varied with the subcellular fraction and the composition of the medium. In general, the acidic (anodic) forms of these hydrolases were more readily solubilized by sonication in acidic buffer, alkaline pH and Triton X-100 being required to solubilize the basic (cationic) components. The acidic forms of these enzymes were converted to less anodic or cathodic forms, or both, during autolysis at pH 6 at 0 and 37°C, and during storage at −20°C.


Acid Phosphatase Subcellular Fraction Acidic Buffer Multiple Component Solubility Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koenig, H. (1969) Lysosomes in the nervous system,in Dingle, J. T., andFell, H. (eds.), Lysosomes in Biology and Medicine, Vol. 2, North-Holland Publishing Co., New York, pp. 111–162.Google Scholar
  2. 2.
    Koenig, H. (1974) The isolation of lysosomes from brain, in Methods of Enzymology, Vol. 31, Academic Press, New York, pp. 457–478.Google Scholar
  3. 3.
    Okada, S., andO'Brien, J. S. (1969) Tay-Sachs disease: generalized absence of a beta-d-N-acetylhexosaminidase component. Science 165, 698–700.PubMedGoogle Scholar
  4. 4.
    Sandhoff, S. (1969) Variation ofβ-N-acetylhexosaminidase-pattern in Tay-Sachs disease. FEBS Lett. 4, 351–354.PubMedGoogle Scholar
  5. 5.
    Young, E. P., Ellis, R. B., Lake, B. D., andPatrick, A. D. (1970) Tay-Sachs disease and related disorders: fractionation of brainN-acetyl-β-hexosaminidase on DEAE-cellulose. FEBS Lett. 9, 1–4.PubMedGoogle Scholar
  6. 6.
    Anderson, P. J. (1965) The effect of autolysis on the distribution of acid phosphatase in the brain. J. Neurochem. 12, 919–925.PubMedGoogle Scholar
  7. 7.
    Bleszynski, W., Leznicki, A., andJewosz, J. (1967) Kinetic properties of three soluble arylsulfatases from ox brain, homogeneous in polyacrylamide gel electrophoresis. Enzymologia 31, 314–324.Google Scholar
  8. 8.
    Harinath, E. C., andRobins, E. (1971) Arylsulfatase in human brain; separation, purification, and certain properties of the two soluble arylsulfatases. J Neurochem. 18, 245–257.PubMedGoogle Scholar
  9. 9.
    Goldstone, A., andKoenig, H. (1970) Lysosomal hydrolases as glycoproteins. Life Science 9, 1341–1350.Google Scholar
  10. 10.
    Goldstone, A., andKoenig, H. (1973) Physicochemical modifications of lysosomal hydrolases during intracellular transport. Biochem. J. 132, 267–282.PubMedGoogle Scholar
  11. 11.
    Goldstone, A., Konecny, P., andKoenig, H. (1971) Lysosomal hydrolases: conversion of acidic to basic forms by neuraminidase. FEBS Lett. 13, 68–72.PubMedGoogle Scholar
  12. 12.
    Koenig, H., Goldstone, A., andNeedleman, S. B. (1972) Physicochemical modification of lysosomal enzymes during intracellular transport. Proceedings of the Fourth International Congress of Histochemists and Cytochemists, Kyoto, Japan, pp. 341, 342.Google Scholar
  13. 13.
    Needleman, S. B., andKoenig, H. (1973) Proceedings of the Ninth International Congress of Biochemists. Stockholm, p. 100.Google Scholar
  14. 14.
    Needleman, S. B., andKoenig, H. (1975) Isoelectric focusing behavior of acid hydrolases in rat kidney lysosomes. Effects of the pH gradient autolysis and neuroaminidase. Biochim. Biophys. Acta 379, 43–56.PubMedGoogle Scholar
  15. 15.
    Needleman, S. B., Koenig, H., andGoldstone, A. (1975) Changes in electronegativity of lysosomal hydrolases during intracellular transport. An isoelectric focusing study in subcellular fractions of rat kidney. Biochim. Biophys. Acta 379, 57–73.PubMedGoogle Scholar
  16. 16.
    Gordon, M. K., Bench, K. G., Deanin, G. G., andGordon, M. W. (1968) Histochemical and biochemical study of synaptic lysosomes Nature 217, 523–527.PubMedGoogle Scholar
  17. 17.
    Koenig, H. (1971) Some observations on the experimental production of acute neuroaxonal and synaptosomal dystrophy. Acta Neuropath. (Berlin), Suppl. V, 126–131.Google Scholar
  18. 18.
    Verity, M. A., Gade, G. F., andBrown, W. J. (1973) Characterization and localization of acid hydrolase activity in synaptosomal fraction from rat cerebral cortex. J. Neurochem. 20, 1635–1648.PubMedGoogle Scholar
  19. 19.
    Koenig, H., Gaines, D., McDonand, T., Gray, R., andScott, J., Jr. (1964) 1. Subcellular distribution of five acid hydrolases, succinate dehydrogenase and gangliosides in rat brain. J. Neurochem. 11, 729–743.PubMedGoogle Scholar
  20. 20.
    Koenig, H., andPatel, A. (1974) Brain hexosaminidase and arylsulfatase isoenzymes in normal and vitamin E-deficient rats: an hypothesis for isoenzyme patterns in GM2 gangliosidoses and metachromatic leukodystrophy. Trans. Am. Neurol. Assoc. 99, 140–143.PubMedGoogle Scholar
  21. 21.
    Patel, A., andKoenig, H. (1972) Isozyme patterns of lysosomal enzymes in brain. Trans. Am. Soc. Neurochem. 3, 111.Google Scholar
  22. 22.
    Patel, A., andKoenig, H. (1974) Hexosaminidase,β-glucuronidase and acid phosphatase isoenzymes in rat brain. Lability, interconversions, subcellular distribution. Trans. Am. Soc. Neurochem. 5, 128.Google Scholar
  23. 23.
    Koenig, H., andPatel, A. (1974) Arylsulfatase isoenzymes in rat brain: lability, interconversions, subcellular distribution. Neurology 4, 396.Google Scholar
  24. 24.
    Koenig, H., andPatel, A. (1975) Distribution, solubility and electrophoretic behavior of lysosomal acid hydrolases in subcellular fractions of rat brain. The role of the formation of enzyme-lipoglycoprotein complexes. Abstract of Satellite Symposium on Tissue Fractionation Methods in Neurochemistry, Goettingen, Germany, pp. 37, 38.Google Scholar
  25. 25.
    Andersch, M. A., andSzczypinski, A. J. (1947) Use of ρ-nitrophenylphosphate as the substrate in determination of serum acid phosphatase. Am. J. Clin. Pathol. 17, 571–574.Google Scholar
  26. 26.
    Roy, A. B. (1958) Comparative studies on the liver sulphatases. Biochem. J. 68, 519–528.PubMedGoogle Scholar
  27. 27.
    Talalay, P., Fishman, W. H., andHuggins, C. (1946) Chromogenic substrates. II. Phenolphthalein glucuronic acid as substrate for the assay of glucuronidase activity. J. Biol. Chem. 166, 757–772.Google Scholar
  28. 28.
    Shutler, E. R., Robins, E., Freeman, L., andJungalwala, F. B. (1970)β-Hexosaminidase in the nervous system: the quantitative histochemistry ofβ-glucosaminidase andβ-galactosaminidase in the cerebral cortex and subjacent white matter. J. Histochem. Cytochem. 18, 271–277.PubMedGoogle Scholar
  29. 29.
    Robins, E., Hirsch, H. E., andEmmons, S. S. (1967) Glycosidases in the nervous system. I. Assay, some properties, and distribution ofβ-galactosidase,β-glucuronidase, andβ-glucosidase. J. Biol. Chem. 243, 4246–4252.Google Scholar
  30. 30.
    Anson, M. L. (1938) The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J. Gen. Physiol. 22, 79–89.Google Scholar
  31. 31.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  32. 32.
    Bulmer, D., andFisher, A. W. (1970) Studies on the characterization and localization of rat placental esterases. J. Histochem. Cytochem. 18, 722–729.PubMedGoogle Scholar
  33. 33.
    Davis, B. J. (1964) Disc electrophoresis. II. Method—application to human serum proteins. Ann. N.Y. Acad. Sci. 121, 404–427.PubMedGoogle Scholar
  34. 34.
    Barka, T., andAnderson, P. J. (1962) Histochemical methods for acid phosphatase using hexazonium pararosaniline as coupler. J. Histochem. Cytochem. 10, 741–753.Google Scholar
  35. 35.
    Hayashi, M. (1964) Distribution ofβ-glucuronidase activity in rat tissues employing the naphthol-AS-BI-glucuronide hexazonium pararosanilin method. J. Histochem. Cytochem. 12, 659–673.PubMedGoogle Scholar
  36. 36.
    Tarentino, A. L., andMaley, F. (1971) Multiple forms of a highly purifiedβ-N-acetylhexosaminidase from hen oviduct. Arch. Biochem. Biophys. 147, 446–456.PubMedGoogle Scholar
  37. 37.
    Gabriel, O., andWang, S.-F. (1969) Determination of enzymatic activity in polyacrylamide gels. I. Enzymes catalyzing the conversion of nonreducing substrates to reducing products. Anal. Biochem. 27, 545–554.PubMedGoogle Scholar
  38. 38.
    Robinson, D., Price, R. G., andDance, N. (1967) Separation and properties ofβ-galactosidase,β-glucosidase,β-glucuronidase andN-acetyl-β-glucosaminidase from rat kidney. Biochem. J. 102, 525–532.PubMedGoogle Scholar
  39. 39.
    De Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R., andAppelmans, F. (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 60, 604–617.PubMedGoogle Scholar
  40. 40.
    Beck, C., andTappel, A. L. (1968) Rat-liver lysosomalβ-glucosidase: a membrane enzyme. Biochim. Biophys. Acta 151, 159–164.PubMedGoogle Scholar
  41. 41.
    Rahman, Y. E., Verhagen, J., andWiel, D. F. M. (1970) Evidence of a membranebound phospholipase A in rat liver lysosomes. Biochem. Biophys. Res. Commun. 38, 670–677.PubMedGoogle Scholar
  42. 42.
    Mellors, A., andTappel, A. L. (1967) Hydrolysis of phospholipids by a lysosomal enzyme. J. Lipid Res. 8, 479–485.PubMedGoogle Scholar
  43. 43.
    Baccino, F. M., Rita, G. A., andZuretti, M. F. (1971) Studies on the structurebound sedimentability of some rat liver lysosome hydrolases. Biochem. J. 122, 363–371.PubMedGoogle Scholar
  44. 44.
    Verity, M. A., Caper, R., andBrown, W. J. (1968) Effect of cations on structure-linked sedimentability of lysosomal hydrolases. Biochem. J. 109, 149–154.PubMedGoogle Scholar
  45. 45.
    Kint, J. A., Dacremont, G., Carton, D., Orye, E., andHooft, C. (1973) Mucopolysaccharidosis: secondarily induced abnormal distribution of lysosomal isoenzymes. Science 187, 352–354.Google Scholar
  46. 46.
    Pearse, A. G. (1972) Carboxylic ester hydrolases,in Histochemistry Theoretical and Applied, Vol. 2, 3rd edition, Williams & Wilkins Publishing Co., Baltimore, pp. 761–807.Google Scholar
  47. 47.
    Gatt, S., andRapport, M. M. (1966) Isolation ofβ-galactosidase andβ-glucosidase from brain. Biochim. Biophys. Acta 113, 567–576.PubMedGoogle Scholar
  48. 48.
    Brady, R. O., Gal, A. E., Kanfer, J. N., andBradley, R. M. (1965) The metabolism of glucocerebrosides. III. Purification and properties of a glucosyl- and galactosylceramide-cleaving enzyme from rat intestinal tissue. J. Biol. Chem. 240, 3766–3770.PubMedGoogle Scholar
  49. 49.
    Lisman, J. J. W., Veltkamp, W. A., andHooghwinkel, G. J. M. (1971) Action of Triton X-100 on the extraction and activation of glycosidases from bovine brain tissue. Neurobiology 1, 121–128.Google Scholar
  50. 50.
    Soller, M., andKoenig, H. (1970) Lipoprotein subunits of myelin, isolation, characterizationin vitro formation of myelin-like membranes. Trans. Am. Neurol. Assoc. 95, 309–311.PubMedGoogle Scholar
  51. 51.
    Soller, M., Koenig, H., Mylroie, R., Hughes, C., andLu, C. Y. (1973) Isolation and characterization of soluble acidic lipoproteins from rat brain synaptic vesicles. J. Neurochem. 21, 557–572.PubMedGoogle Scholar
  52. 52.
    Schengrund, C.-L., andRosenberg, A. (1970) Intracellular location and properties of bovine brain sialidase. J. Biol. Chem. 245, 6196–6200.PubMedGoogle Scholar
  53. 53.
    Tettamanti, G., Morgan, J. G., Gombos, G., Vincendon, G., andMandel, P. (1972) Sub-synaptosomal localization of brain particulate neuraminidase. Brain Res. 47, 515–518.PubMedGoogle Scholar
  54. 54.
    Heijlman, J., andRoukema, P. A. (1972) The action of calf brain sialidase on gangliosides, sialoglycoproteins and sialoglycopeptides. J. Neurochem. 19, 2567–2575.PubMedGoogle Scholar
  55. 55.
    Murphy, J. V., andCraig, L. (1974) Effect of human cerebral neuraminidase on hexosaminidase A. Clin. Chim. Acta 51, 67–73.PubMedGoogle Scholar
  56. 56.
    Graham, E. R. B., andRoy, A. B. (1973) The sulphatase of ox liver. XVII. Sulphatase A as a glycoprotein. Biochem. Biophys. Acta 329, 88–92.PubMedGoogle Scholar
  57. 57.
    Srivastava, S. K., Awasthi, Y. C., Yoshida, A., andBeutler, E. (1974) Studies on humanβ-d-N-acetylhexosaminidases. I. Purification and properties J. Biol. Chem. 249, 2043–2048.PubMedGoogle Scholar
  58. 58.
    Tallman, J. F., Brady, R. O., Quirk, J. M., Villalba, M. andGal, A. E. (1974) Isolation and relationship of human hexosaminidases. J. Biol. Chem. 249, 3489–3499.PubMedGoogle Scholar
  59. 59.
    Beutler, E., andKuhl, W. (1972) Purification and properties of humanα-galactosidases. J. Biol. Chem. 247, 7195–7200.PubMedGoogle Scholar
  60. 60.
    Goldstone, A., andKoenig, H. (1974) Autolysis of glycoproteins in rat kidney lysosomesin vitro. Effects on the isoelectric focusing behavior of glycoproteins, arylsulfatase andβ-glucuronidase. Biochem. J. 141, 527–535.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Abdussamad Patel
    • 1
    • 2
  • Harold Koenig
    • 1
    • 2
  1. 1.Neurology ServiceVeterans Administration Lakeside HospitalChicago
  2. 2.Department of NeurologyNorthwestern University Medical SchoolChicago

Personalised recommendations