Skip to main content
Log in

The serotonin 5-HT1D receptor: A progress review

  • Mini Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Most of the known neurotransmitters interact with more than one type of receptor. Some of them even dispose of receptor subtypes to exert their actions. Serotonin, far from being an exception to that, possesses at least 3 classes of receptors, which have all been reported to be heterogeneous, although convincing data only exist for the 5-HT1 class. This name has been proposed in 1979, two years before the introduction of ‘A’ and ‘B’ in the nomenclature to account for the observed heterogeneity of these cites. The 5-HT1C receptor subtype was first described in 1984 and the last member of the family, named 5-HT1D, was characterized in 1987. The pharmacological profiles, the signal transducing systems and the anatomical localizations, both at the regional and cellular levels, of all these subtypes have been investigated and possible functions have been proposed for each of them. Moreover, last and most definitive demonstration of the subtype individuality, the gene or complementary DNA coding for the 5-HT1A and 5-HT1C (and 5-HT2) receptors have been cloned and sequenced. Such data are still missing for 5-HT1D (and 5-HT1B) receptors, but will certainly be provided in the next few years. However and waiting for this decisive clue, the characterization of the 5-HT1D subtype leaves no doubt concerning its significance as a functional 5-HT receptor. This review will concentrate on the characteristics of this subtype of 5-HT receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5-CT:

5-carboxamidotryptamine

5-MeOT:

5-methoxy-tryptamine

5-MeODMT:

N,N-dimethyl-5-methoxytryptamine

8-OH-DPAT:

8-hydroxy-2[di-n-propylamino]tetralin

CYP:

cyanopindolol

DHE:

dihydroergotamine

DOI:

2,5-dimethoxy-4-iodophenylisopropylamine

DP-5-CT:

N,N-dipropyl 5-carboxamidotryptamine

ICPY:

2-iodo-cyanopindolol

mCPP:

m-chloro-phenyl-piperazine

TFMPP:

m-trifluoro-methyl-phenyl-piperazine

EMAX :

Maximal effect

EC50 :

Half maximal effective concentration

KD :

Dissociation constant

KB :

Antagonist dissociation constant

References

  1. Asarch K.B., Ransom R.W., and Shih J.C. 1989. 5-HT1A and 5-HT1B selectivity of two phenylpiperazine derivatives: evidence for 5-HT1B heterogeneity. Life Sci. 36:1265–1273.

    Google Scholar 

  2. Barnes, N.M., Costall, B., and Naylor, R.J. 1988a. [3H]Zacopride: Ligand for the identification of 5-HT3 recognition sites, J. Pharm. Pharmacol., 40:548–551.

    Google Scholar 

  3. Birkmayer, W. and Riederer, P. 1980. Die Parkinson-Krankheit: Biochemie, Klinik, Therapie. Springer-Verlag, Vienna.

    Google Scholar 

  4. Bonner, T.I. 1989. The molecular basis of muscarinic receptor diversity. Trends Neurosci. 12:148–151.

    Google Scholar 

  5. Bouhelal, R., Smounya, L., and Bockaert, J. 1988. 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra, European J. Pharmacol. 151:189–196.

    Google Scholar 

  6. Bradley, P.B., Engel, G., Feniuk, W., Fozard, J.R., Humphrey, P.P.A., Middlemiss, D.N., Mylecharane, E.J., Richardson, B.P. and Saxena, P.R. 1986. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine, Neuropharmacology 25:563–576.

    Google Scholar 

  7. Brauth, S.E., Fergusson, J.L., and Kitt, C.A. 1978. Prosencephalic pathways related to the paleostriatum of the pigeon (Columbia Livia). Brain Res 147:205–221.

    Google Scholar 

  8. Brodie, T.G. 1900. The immediate action of an intravenous injection of blood serum. J. Physiol. 26:48–71.

    Google Scholar 

  9. Conn, P.J., and Sanders-Bush E. 1984. Selective 5-HT2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 23:993–996.

    Google Scholar 

  10. Conn P.J., and Sanders-Bush E. 1986. Agonist induced phosphoinositides hydrolysis in choroid plexus. J. Neurochem 47:1754–1760.

    Google Scholar 

  11. Cross, A.J. 1988. Serotonin in neurodegenerative disorders. In Neuronal Serotonin (ed. N.N. Osborne and M. Hamon), pp 231–253. John Wiley & Sons, Chichester.

    Google Scholar 

  12. Cross, A.J., Reynolds, G.P., Hewitt, L.M., and Slater, P. 1986. Brain serotonin receptors in Huntington's disease, Neurochem. Int. 9:431–435.

    Google Scholar 

  13. De Vivo, M., and Maayani, S. 1986. Characterization of the 5-hydroxytryptamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea-pig and rat hipocampal membranes. J. Pharmacol. Exp. Ther. 238:248–253.

    Google Scholar 

  14. Doenicke, A., Brand, J., and Perrin V.L. 1988. Possible benefit of GR43175, a novel 5-HT1-like receptor agonist, for the acute treatment of severe migraine. The Lancet, 1309.

  15. Dohlman H.G., Caron, M.G., and Lefkowitz R.L. 1987. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26:2657–2664.

    Google Scholar 

  16. Dray, A. 1979. The striatum and substantia nigra: a commentary on their relationships, Neuroscience 4:1407–1439.

    Google Scholar 

  17. Engel G., Göthert M., Hoyer D., Schlicker E., and Hillenbrand K. 1986. Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg's Arch Pharmacol 332:1–7.

    Google Scholar 

  18. Fargin, A., Raymond, J.R., Lohse, M.J., Kobilka, B.K., Caron, M.C., and Lefkowitz, R.J. 1988. The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor, Nature 335:358–360.

    Google Scholar 

  19. Feuerstein, T.J., Lupp, A. and Hertting, G. 1987. The serotonin (5-HT) autoreceptor in the hippocampus of the rabbit: role of 5-HT biophase concentration. Neuropharmacol. 26:1071–1080.

    Google Scholar 

  20. Gaddum, J.H., and Picarelli, Z.P. 1957. Two kinds of tryptamine receptor. Brit. J. Pharmacol. 12:323–328.

    Google Scholar 

  21. Galzin, A.M., Blier, P., Chodkiewicz, J.P., Poirier, M.F., Loo, H., Roux, F.X., Redondo, A., Lista, A., Ramdine, R., and Langer, S.Z. 1988. Pharmacological characterization of the serotonin 5-HT autoreceptor modulating the electrically-evoked release of3H-5-HT from slices of human frontal cortex. Soc. Neurosci. Abstracts, 129.7

  22. Glaum, S.R. and Anderson, E.G. 1988. Identification of 5-HT3 binding sites in rat spinal cord synaptosomal membranes, European J. Pharmacol. 156:287–290.

    Google Scholar 

  23. Herrick-Davis, K., Titeler, M., Leonhardt, S., Struble, R., and Price, D. 1988. Serotonin 5-HT1D receptors in human prefrontal cortex and caudate: interaction with a GTP binding protein. J. Neurochem 51:1906–1912.

    Google Scholar 

  24. Herrick-Davis, K. and Titeler, M. 1989. Detection and characterization of a 5-HT1D serotonin receptor-GTP binding protein interaction in porcine and human brain. Synapse 3:325–330.

    Google Scholar 

  25. Heuring, R.E., and Peroutka, S.J. 1987. Characterization of a novel3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J. Neurosci 7:894–903.

    Google Scholar 

  26. Hoyer, D., Engel, G. and Kalkman, H.O. 1985. Characterization of the 5-HT1B recognition site in rat brain: binding studies with (−)[125I]iodocyanopindolol, European J. Pharmacol. 118:1–12.

    Google Scholar 

  27. Hoyer, D., Engel, G., and Kaklman, H.O. 1985. Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: Radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (−)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserine. Eur J Pharmacol 118:13–23.

    Google Scholar 

  28. Hoyer, D., Pazos, A., Probst, A., and Palacios, J.M. 1986. Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res. 376:85–96.

    Google Scholar 

  29. Hoyer, D., Waeber, C., Pazos, A., Probst, A. and Palacios, J.M. 1988. Identification of a 5-HT1 recognition site in human brain membranes different from 5-HT1A, 5-HT1B and 5-HT1C sites. Neurosci. Lett. 85:357–362.

    Google Scholar 

  30. Hoyer, D. and Neijt, H.C. 1988. Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol. Pharmacol. 33:303–309.

    Google Scholar 

  31. Hoyer, D., Waeber, C., Schoeffter, P., Palacios, J.M., and Dravid, A. 1989. 5-HT1C receptor-mediated stimulation of inositol phosphate production in pig choroid plexus. A pharmacological characterization. Naunyn-Schmiedeberg's Arch. Pharmacol. 339:252–258.

    Google Scholar 

  32. Hoyer, D. 1989. 5-hydroxytryptamine receptors and effector coupling mechanisms in peripheral tissues. In The Peripheral Actions of 5-HT (Ed J.R. Fozard), pp 72–99, Oxford University Press, Oxford.

    Google Scholar 

  33. Hoyer, D. and Middlemiss D.N. 1989. The pharmacology of the terminal 5-HT autoreceptors in mammalian brain: evidence for species differences. Trends Pharmacol. Sci. 10:130–132.

    Google Scholar 

  34. Hoyer, D., Waeber, C., Karpf, A., Neijt, H., and Palacios, J.M. 1989. [3H]ICS 205-930 labels 5-HT3 recognition sites in membranes of cat and rabbit vagus nerve and superior cervical ganglion. Naunyn-Schmiedeberg's Arch. Pharmacol. 340:396–402.

    Google Scholar 

  35. Humphrey, P.P.A., Feniuk, W., Perren, M.J., Connor, H.E., Oxford, A.W., Coates, I.H., and Butina, D. 1988. GR 43175 —A selective agonist for the 5-HT1-like receptors in dog isolated saphenous vein. Br. J. Pharmacol. 94:1123–1132.

    Google Scholar 

  36. Jonsson, G. 1981. Lesion methods in neurobiology. In Techniques in neuroanatomical research (Eds. Ch. Heym and W.-G. Forssmann), pp 71–99, Springer-Verlag, Berlin.

    Google Scholar 

  37. Julius, D., MacDermott, A.B., Axel, R., and Jessell, T.M. 1988. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 241:558–564.

    Google Scholar 

  38. Kilpatrick, G.J., Jones, B.J. and Tyers, M.B. 1987. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748.

    Google Scholar 

  39. Kobilka, B.K., Matsui, H., Kobilka, T.S., Yang-Feng, T.L., Francke, U., Caron, M.G., Lefkowitz, R.J., and Regan, J.W. 1987. Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor. Science 238:650–656.

    Google Scholar 

  40. Kobilka, B.K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T.S., Francke, U., Lefkowitz, R.J., and Caron, M. 1987. An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75–79.

    Google Scholar 

  41. Kobilka, B.K., Kobilka, T.S., Daniel, K., Regan, J.W., Caron, M.G., and Lefkowitz, R.J. 1988. Chimeric α22-adrenergic receptors: delineation of domains involved in effector coupling and ligand specificity. Science 240:1310–1316.

    Google Scholar 

  42. Kowall, N.W., Ferrante, R.J. and Martin, J.B. 1987. Patterns of cell loss in Huntington's disease. TINS 10:24–29.

    Google Scholar 

  43. Kuhar, M.J. 1982. Localization of drug and neurotransmitter receptors in brain by light microscope autoradiography. Pages 299–320.in Iversen L.L., Iversen S.D. and Snyder S.H. (eds.) Plenum Press, New York.

    Google Scholar 

  44. Laduron, P. 1983. More binding, more fancy. Trends Pharmacol. 4:333–335.

    Google Scholar 

  45. Leonhardt, S., Herrick-Davis, K., and Titeler, M. 1989. Detection of a novel serotonin receptor subtype (5-HT1E) in human brain: interaction with a GTP-binding protein. J. Neurochem. 53:465–471.

    Google Scholar 

  46. Leysen, J.E., Niemegeers, C.J.E., Van Nueten, J.M. and Laduron, P.M. 1982. [3H]Ketanserin (R 41 468), a selective [3H]-ligand for serotonin2 receptor binding sites. Mol. Pharmacol. 21:301–314.

    Google Scholar 

  47. Lübbert, H., Snutch, T., Dascal, N., Lester, H.A., and Davidson, N. 1987. Rat brain 5-HT1C receptors are encoded by a 5–6 kb mRNA Size class and functionally expressed in injected Xenopus Oocytes, J. Neurosci. 4:1159–1165.

    Google Scholar 

  48. Maguire, M.E., Ross, E.M., and Gilman, A.G. 1976. An agonist specific effect of guanine nucleotides on binding to the beta-adrenergic receptors. Mol. Pharmacol. 12:335–339.

    Google Scholar 

  49. Middlemiss, D.N., Bremer, M.E., and Smith, S.M. 1988. A pharmacological analysis of the 5-HT receptors mediating inhibition of 5-HT release in the guinea-pig frontal cortex. Eur J Pharmacol 157:101–107.

    Google Scholar 

  50. Murphy, T.J., and Bylund, D.B. 1988. Oxymetazoline inhibits adenylate cyclase by activation of serotonin-1 receptors in the OK cell, an established renal epithelial cell line. Mol Pharmacol 34:1–7.

    Google Scholar 

  51. Neale, R.F., Fallon, S.L., Boyar, W.C., Wasley, J.W.F., Martin, L.L., Stone, G.A., Glaeser, B.S., Sinton, C.M., Williams, M. 1987. Biochemical and pharmacological characterization of CGS 12066B, a selective serotonin-1B agonist. Eur. J. Pharmacol. 136:539–546.

    Google Scholar 

  52. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S., and Numa, S. 1983. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor subunits. Nature 302:818–823.

    Google Scholar 

  53. Palacios, J.M. and Dietl, M.M. 1988. Autoradiographic studies on 5-HT receptors. Pages 89–138in E. Sanders-Bush (ed.) The Serotonin Receptors. The Humana Press Inc, Clifton N.J.

    Google Scholar 

  54. Palacios, J.M., Cortés, R., and Dietl, M.M. 1988. A laboratory guide for the in vitro labeling of receptors in tissue sections for autoradiography.in Van Leeuwen, Buijs, Pool, and Pach (eds) Molecular Neuroanatomy. Elsevier, Amsterdam.

    Google Scholar 

  55. Parent, A., Poitras, D., and Dubé, L. 1984. Comparative anatomy of central monoaminergic systems. Pages 409–439,in Björklund A. and Hökfelt T., (eds.) Handbook of chemical neuroanatomy, Vol 2: Classical transmitters in the CNS, Part I. Elsevier, Amsterdam.

    Google Scholar 

  56. Pazos, A., and Palacios, J.M. 1985. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 346:205–230.

    Google Scholar 

  57. Pazos, A., Cortés, R., and Palacios, J.M. 1985. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res. 346:231–249.

    Google Scholar 

  58. Pazos, A., Probst, A., and Palacios, J.M. 1987. Serotonin receptors in the human brain III Autoradiographic mapping of serotonin-1 receptors. Neuroscience. 21:97–122.

    Google Scholar 

  59. Pazos, A., Probst, A., and Palacios, J.M. 1987. Serotonin receptors in the human brain IV Autoradiographic mapping of serotonin-2 receptors. Neuroscience. 21:123–139.

    Google Scholar 

  60. Pazos, A., Hoyer, D., Dietl, M.M., and Palacios, J.M. 1988. Autoradiography of serotonin receptors. Pages 507–544, (ed.) Osborne N.N. and Hamon M.,in Neuronal Serotonin John Wiley & Sons, Chichester.

    Google Scholar 

  61. Peroutka, S.J., and Snyder, S.H. 1979. Multiple serotonin receptors: differential binding of [3H]-5-hydroxy-tryptamine, [3H]lysergic acid diethylamide and [3H]-spiroperidol, Mol. Pharmacol. 16:687–699.

    Google Scholar 

  62. Peroutka, S.J. 1988. 5-hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. S, TINS 11:496–500.

    Google Scholar 

  63. Peroutka, S.J., and Hamik, A. 1988. [3H]Quipazine labels 5-HT3 recognition sites in rat cortical membranes, Eur. J. Pharmacol., 148:297–299.

    Google Scholar 

  64. Peroutka, S.J., Switzer, J.A., and Hamik, A. 1989. Identification of 5-hydroxytryptamine1D binding sites in human brain membranes. J. Neurochem., in press.

  65. Pritchett, D.B., Bach, A.W.J., Wozny, M., Taleb, O., Dal Toso, R., Shih, J.C. and Seeburg, P.H. 1988. Structure and functional expression of cloned rat serotonin 5-HT2 receptor. EMBO J. 7:4135–4140.

    Google Scholar 

  66. Ram, J.L., Kreiman, M.A., and Gole, D. 1987. LY 165163 and 8-OH-DPAT have agonist effects on a serotonin responsive muscle of Aplysia. Eur. J. Pharmacol. 139:247–250.

    Google Scholar 

  67. Quirion, R. and Richard, J. 1987. Differential effects of selective lesions of cholinergic and dopaminergic neurons on serotonin-type 1 receptors rat brain, Synapse 1:124–130.

    Google Scholar 

  68. Rapport, M.M., Green, A.A., and Page, I.H. 1947. Purification of the substance which is responsible for vasoconstrictor activity of serum. Federation Proc 6:184.

    Google Scholar 

  69. Rapport, M.M. 1949. Serum vasoconstrictor (serotonin) V. Presence of creatinine in the complex. A proposed structure of the vasoconstrictor principle. J. Biol. Chem. 180:961–969.

    Google Scholar 

  70. Reiner, A., Brauth, S.E., and Karten, H.J. 1984. Evolution of the amniote basal ganglia. TINS 7:320–325.

    Google Scholar 

  71. Richardson, B.P. and Engel, G. 1986. The pharmacology and function of 5-HT3 receptors. Trends Neurosci. 9:424–428.

    Google Scholar 

  72. Raisman, R., Cash, R., and Agid, Y. 1986. Parkinson's disease: decreased density of3H-imipramine and3H-paroxetine binding sites in putamen, Neurology 36:556–650.

    Google Scholar 

  73. Salomon, Y., Londos, C., and Rodbell, M. 1974. A highly sensitive adenylate cyclase assay. Anal. Biochem. 58:541–548.

    Google Scholar 

  74. Sanders-Bush, E. 1988. 5-HT receptors: transmembrane signaling mechanisms Pages 449–645,in Osborne N.N. and Hamon M. (eds.) Neuronal Serotonin. John Wiley & Sons, Chichester.

    Google Scholar 

  75. Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B. and Agid, Y. 1983. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinsons's disease, Brain Res. 275:321–328.

    Google Scholar 

  76. Schipper, J., and Tulp, M.T.M. 1988. Serotonin autoreceptors in guinea pig cortex slices resemble the 5-HT1D binding site. Soc. Neurosci Abstr 221.8

  77. Schlicker, E., Fink, K., Betz, R., and Göthert, M. 1988. The serotonin autoreceptor in the pig brain cortex belongs to the 5-HT1D receptor subtype. Naunyn-Schmiedeberg's Arch Pharmacol 338:(suppl), R67.

    Google Scholar 

  78. Schoeffter, P., Waeber, C., Palacios, J.M., and Hoyer, D. 1988. The 5-hydroxytryptamine 5-HT1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra, Naunyn-Schmiedeberg's Arch. Pharmacol, 337:602–608.

    Google Scholar 

  79. Schoeffter, P., and Hoyer, D. 1989. Interaction of arylpiperazines with 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors: do discriminatory 5-HT1B receptor ligands exist? Naunyn-Schmiedeberg's Arch. Pharmacol. 339:675–683.

    Google Scholar 

  80. Schoeffter, P., and Hoyer, D. 1989. How selective is GR 43175? Interactions with functional 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 340:135–138.

    Google Scholar 

  81. Schoeffter, P., and Hoyer, D. 1990. 5-hydroxytryptamine (5-HT)-induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5-HT1D receptor subtype. J. Pharmacol. Exp. Ther. 252:387–395.

    Google Scholar 

  82. Schwarcz, R., Bennett, J.P., and Coyle, J.T. 1977. Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: correlations with Huntington's disease, J. Neurochem. 28:867–869.

    Google Scholar 

  83. Segu, L., Abdelkefi, J., Dusticier, G., and Lanoir, J. 1986. High-affinity serotonin binding sites: autoradiographic evidence for their location on retinal afferents in the rat superior colliculus. Brain Res. 384:205–217.

    Google Scholar 

  84. Seuwen, K., Magnaldo, I., and Pouysségur, J. 1988. Serotonin stimulates DNA synthesis in fibroblasts acting through 5-HT1B receptors coupled to a Gi-protein. Nature 335:254–256.

    Google Scholar 

  85. Twarog, B.M., and Page, I.H. 1953. Serotonin content of some mammalian tissues and urine and method for its determination. Am. J. Physiol. 175:157–161.

    Google Scholar 

  86. Vergé, D., Daval, G., Marcinkiewicz, M., Patey, A., El Mestikawy, S., Gozlan, H., and Hamon, M. 1986. Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydroxy-tryptamine-treated rats. J. Neurosci. 6:3474–3482.

    Google Scholar 

  87. Waeber, C., Schoeffter, P., Palacios, J.M., and Hoyer, D. 1988. Molecular pharmacology of 5-HT1D recognition sites: radioligand binding studies in human, pig and calf brain membranes, Naunyn-Schmiedeberg's Arch. Pharmacol, 337:595–601.

    Google Scholar 

  88. Waeber, C., Dietl, M.M., Hoyer, D., Probst, A., and Palacios, J.M. 1988. Visualization of a novel serotonin recognition site (5-HT1D) in the human brain by autoradiography. Neurosci. Lett., 88:11–16.

    Google Scholar 

  89. Waeber, C., Dixon, K., Hoyer, D., and Palacios, J.M. 1988. Localisation by autoradiography of neuronal 5-HT3 receptors in the mouse CNS, Eur. J. Pharmacol., 151:351–352.

    Google Scholar 

  90. Waeber, C., Schoeffter, P., Palacios, J.M., and Hoyer, D. 1989. 5-HT1D receptors in guinea-pig and pigeon: radioligand binding and biochemical studies. Naunyn-Schmiedeberg's Arch. Pharmacol. 340:479–485.

    Google Scholar 

  91. Waeber, C., Dietl, M.M., Hoyer, D., and Palacios, J.M. 1989. 5-HT1D receptors in the vertebrate brain: regional distribution examined by autoradiography. Naunyn-Schmiedeberg's Arch. Pharmacol. 340:486–494.

    Google Scholar 

  92. Waeber, C., Hoyer, D., and Palacios, J.M. 1989. 5-hydroxytryptamine3 receptors in the human brain: autoradiographic visualization using [3H]ICS 205-930. Neurosci. 31, 393–400.

    Google Scholar 

  93. Waeber, C., and Palacios, J.M. 1989. Serotonin-1 receptor binding sites in the human basal ganglia are decreased in Huntington's chorea but not in Parkinson's disease: a quantitative in vitro autoradiography study, Neurosci. 32:337–347.

    Google Scholar 

  94. Waeber, C., Hoyer, D., and Palacios, J.M. 1989. GR 43175 displaces [3H]5-HT from 5-HT1D sites in monkey and human brain: an autoradiographic study. Synapse 4:168–170.

    Google Scholar 

  95. Waeber, C., and Palacios, J.M. 1989. Serotonin-1 receptor binding sites in the guinea-pig superior colliculus are predominantly of the 5-HT1D class and presynaptically located on the retinal afferents. Brain Res., in press.

  96. Waeber, C., Zhang, L., and Palacios, J.M. 1989. Serotonin-1D receptor binding sites in the guinea-pig: pre- and postsynaptic localization in the striato-nigral pathway. Brain Res., in press.

  97. Weissmann, D., Mach, E., Oberlander, C., Demassey, Y. and Pujol, J.F. 1986. Evidence for hyperdensity of 5-HT1B binding sites in the substantia nigra of the rat after 5,7-dihydroxytryptamine intraventricular injection, Neuro- chem. Int. 9:191–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waeber, C., Schoeffter, P., Hoyer, D. et al. The serotonin 5-HT1D receptor: A progress review. Neurochem Res 15, 567–582 (1990). https://doi.org/10.1007/BF00973745

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973745

Key Words

Navigation