Advertisement

Lithuanian Mathematical Journal

, Volume 23, Issue 4, pp 367–376 | Cite as

Properties of solutions of stochastic differential equations

  • R. Mikulevičius
Article

Keywords

Differential Equation Stochastic Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. L. Rozovskii, “The Ito-Wentzel formula,” Vestn. Mosk. Gos. Univ., No. 1, 26–32 (1973).Google Scholar
  2. 2.
    B. L. Rozovskii, “Conditional distributions of degenerate diffusion processes,” Teor. Veroyatn. Primen., No. 1, 149–154 (1980).Google Scholar
  3. 3.
    J. M. Bismut, “A generalized formula of Ito and some other properties of stochastic flows,” Z. Wahrscheinlichkeitstheorie,55, 331–350 (1981).Google Scholar
  4. 4.
    J. M. Bismut and D. Michel, “Diffusions conditionelles. I, II,” J. Funct. Anal.,44, No. 2, 174–211;45, No. 2, 274–292 (1981).Google Scholar
  5. 5.
    B. Grigelionis and R. Mikulevichius, “Stochastic evolution equations and densities of the conditional distributions,” Lect. Notes Control Inf. Sci. (1983).Google Scholar
  6. 6.
    N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Kodanska (1980).Google Scholar
  7. 7.
    J. Jacod, Calcul Stochastique et Problemes des Martingales, Lect. Notes Math., No. 714 (1979).Google Scholar
  8. 8.
    H. Kunita, “On the decomposition of solutions of stochastic differential equations,” Lect. Notes Math.,851, 213–255 (1981).Google Scholar
  9. 9.
    H. Kunita, “Stochastic differential equations connected with nonlinear filtering,” in: Nonlinear Filtering and Stochastic Control. C.I.M.E. Session, Cortona, Italy.Google Scholar
  10. 10.
    P. Malliavin, “Stochastic calculus of variations and hypoelliptic operators,” in: Proc. Int. Sympos. Stoch. Diff. Equations of Kyoto (1976), pp. 195–263.Google Scholar
  11. 11.
    M. Metivier, “Pathwise differentiability with respect to a parameter of solution of stochastic differential equations,” Preprint (1981).Google Scholar
  12. 12.
    P. A. Meyer, “Flos d'une equation differentielle stochastique,” Lect. Notes Math.,850, 103–117 (1981).Google Scholar
  13. 13.
    C. Stricker and M. Yor, “Calcul stochastique dependent d'un parametre,” Z. Wahrsheinl.,45, 109–133 (1978).Google Scholar
  14. 14.
    D. Michel, “Une resolution recursive de l'equation de filtrage non lineaire,” Preprint (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • R. Mikulevičius

There are no affiliations available

Personalised recommendations