Journal of Solution Chemistry

, Volume 23, Issue 2, pp 249–261 | Cite as

Chain dynamics of high molecular weight polyethylene as observed from heats of dissolution in slow calorimetry

  • H. Phuong-Nguyen
  • G. Delmas


The Setaram C80 calorimeter with large cells permits accurate measurements of heats in dilute solution. Slow calorimetry is well suited to follow slow phase changes unnoticeable by fast calorimetry. Heats of solution of nascent high molecular weight polyethylene (HMWPE) have been obtained in a slow T-ramp (v=1–12 K-h−1) in a variety of solvents. A new contribution to the enthalpy of fusion of polyolefins has been found. The total heat of dissolution thus contains two contributions due (1) to the melting of orthorhombic crystals and (2) the disordering of a network of entangled chains. An investigation is made of the new contribution (2), which can evolve at low temperature since strain does not build up due to the solvent. Conditions to change the range of temperature at which the second contribution evolves (nature of the solvent, rate of heating, concentration, cycles of dissolution/crystallization) are investigated.

Key Words

PE heat of dissolution/crystallization strain network LCST 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.(a)
    B. Wunderlich,Macromolecular Physics, (Academic Press, New York, 1980), Vol. 2 (1976)Google Scholar
  2. 1.(b)
    —,Macromolecular Physics, (Academic Press, New York, 1980), Vol. 3 (1980).Google Scholar
  3. 2.
    H. Phuong-Nguyen and G. Delmas,Thermochimica Acta 207, 000, (1994).Google Scholar
  4. 3.
    A. Zwijenburg and A. J. Pennings,J. Colloid Polym. Sc. 253, 452 (1975).Google Scholar
  5. 4.
    P. Smith, P. J. Lemstra, J. P. L. Pipers, C. G. Cannon, and A. M. Keil,Colloid Polym. Sci. 259, 1070 (1981).Google Scholar
  6. 5.
    H. Phuong-Nguyen and G. Delmas,Macromolecules 18, 1235–1240 (1985).Google Scholar
  7. 6.
    G. Charlet, H. Phuong-Nguyen, and G. Delmas,Macromolecules 15, 1200–1208 (1984).Google Scholar
  8. 7.
    K. A. Narth, P. J. Barham, and A. Keller,Macromolecules 15, 464 (1982).Google Scholar
  9. 8.
    J. Smook and A. J. Pennings,Colloid Polym. Sci. 262, 712 (1984).Google Scholar
  10. 9.
    H. Phuong-Nguyen and G. Delmas,Macromolecules 30, 408 (1992).Google Scholar
  11. 10.
    H. Phuong-Nguyen, and G. Delas,Macromolecules 30, 414 (1992).Google Scholar
  12. 11.
    G. Delmas,J. Polym. Sci. Part B Polymer Physics Ed. 31, 2011 (1993).Google Scholar
  13. 12.
    P. G. De Gennes,Macromolecules 17, 703 (1984).Google Scholar
  14. 13.
    T. Brenner and A. Rudin,J. Polym. part B, Polymer Physics Ed. 30, 1247, (1992).Google Scholar
  15. 14.
    H. Phuong-Nguyen, Ph. D. Thesis, McGill University, Montreal, Canada (1991).Google Scholar
  16. 15.
    M. Matsuo, C. Sawatari,Macromolecules 19, 1036 (1986).Google Scholar
  17. 16.
    T. Ogita, N. Suzuki, F. Ozaki, and M. Matsuo,Polymer 32, 822 (1991).Google Scholar
  18. 17.
    A. Barbalata, T. Bohossian, K. Prochazka, and G. Delmas.Macromolecules 21, 3286 (1988).Google Scholar
  19. 18.
    P. Bernazzani, M.Sc. Thesis, UQAM (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • H. Phuong-Nguyen
    • 1
  • G. Delmas
    • 1
  1. 1.Chemistry DepartmentUniversité du Québec à MontréalMontréalCanada

Personalised recommendations