Abstract
Apparent equilibrium constants and calorimetric enthalpies of reaction have been measured for the reaction L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate(aq) + ammonia(aq) which is catalyzed by L-tryptophanase. High-pressure liquid-chromatography and microcalorimetery were used to perform these measurements. The equilibrium measurements were performed as a function of pH, temperature, and ionic strength. The results have been interpreted with a chemical equilibrium model to obtain thermodynamic quantities for the reference reaction: L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate−(aq) + NH +4 (aq). At T=25°C and Im=O the results for this reaction are: Ko=(1.05±0.13)×10−4, ΔΓ G°=(22.71±0.33) kJ-mol−1, ΔΓ H°=(62.0±2.3) kJ-mol−1, and ΔΓ S°=(132±8) J-K−1-mol−1. These results have been used together with thermodynamic results from the literature to calculate standard Gibbs energies of formation, standard enthalpies of formation, standard molar entropies, standard molar heat capacities, and standard transformed formation properties for the substances participating in this reaction.
Similar content being viewed by others
References
Enzyme Nomenclature 1992, E. C. Webb, ed., (Academic Press, San Diego, 1992).
Y. Morino and E. E. Snell,Methods Enzymol. 17A, 439 (1970).
R. S. Phillips,Arch. Biochem. Biophys. 256, 302 (1987).
D. K. Steckler, R. N. Goldberg, Y. B. Tewari, and T. J. Buckley,J. Res. Natl. Bur. Stand. 91, 113 (1986).
D. K. Steckler, R. N. Goldberg, Y. B. Tewari, and T. J. Buckley,Computer Software for the Acquisition and Treatment of Calorimetric Data, National Bureau of Standards Technical Note 1224 (U. S. Government Printing Office, Washington, D. C. 1986).
R. N. Goldberg and Y. B. Tewari,Biophys. Chem. 40, 241 (1991).
H. S. Simms,J. Gen Physiol. 11, 629 (1928).
M. M. Rapport, A. A. Green, and I. H. Page,J. Biol. Chem. 176, 1243 (1948).
A. Albert,Biochem. J. 47, 531 (1950).
D. D. Perrin,J. Chem. Soc. 3125 (1958).
J. Hermans, J. W. Donovan, and H. A. Scheraga,J. Biol. Chem.,235, 91 (1960).
Y. Nozaki and C. Tanford,J. Am. Chem. Soc. 89, 736 (1967).
D. R. Williams, J. Chem. Soc.A 1550 (1970).
P. S. Hallman, D. D. Perrin, and A. E. Watt,Biochem. J. 121, 549 (1971).
O. A. Weber and V. L. Simeon,Biochim. Biophys Acta 244, 94 (1971).
M. C. Lim, J. Chem. Soc. Dalton Trans. 726 (1978).
D. V. Jahagirdar, B. R. Arbad, T. K. Chondhekar, and S. U. Pankanti,Indian J. Chem. A28, 366 (1989).
F. Rodante,Thermochim. Acta 149, 157 (1989).
F. Rodante and F. Fantauzzi,Thermochim. Acta 144, 75 (1989).
M. G. Khaledi and A. H. Rodgers,Anal. Chim. Acta 239, 121 (1990).
C. L. A. Schmidt, W. K. Appleman, and P. L. Kirk,J. Biol. Chem. 85, 137 (1929).
D. J. Perkins,Biochem. J. 55, 649 (1953).
J. L. Meyer and J. E. Bauman, Jr.,J. Chem. Eng. Data 15, 404 (1970).
L. P. Berezina, V. G. Samoilenko, and A. I. Pozigun,Zh. Neorg. Khim. 18, 303 (1973);Russ. J. Inorg. Chem. 18, 205 (1973).
H. Sigel and C. F. Naumann,J. Am. Chem. Soc. 98, 730 (1976).
R. F. Jameson, G. Hunter, and T. Kiss,J. Chem. Soc. Perkin Trans. 2 1105 (1980).
G. Berthon, M. Piktas, and M.-J. Blais,Inorg. Chim. Acta 93, 117 (1984).
K. Matsudo, C. Kanai, M. Takahara, and M. Maki,Nippon Kagaku Kaishi 698 (1985).
N. N. Vlasova and N. K. Davidenko,Zh. Neorg. Khim. 30, 1738 (1985);Russ. J. Inorg. Chem. 30, 988 (1985).
T. Hirokawa, T. Gojo, and Y. Kiso,J. Chromatogr. 369, 59 (1986).
M. A. Marini, R. L. Berger, D. P. Lam, and C. J. Martin,Anal. Biochem. 43, 188 (1971).
J. Böesken, L. W. Hansen, and S. H. Bertram,Rec. Trav. Chim. 35, 309 (1915).
E. Larsson,Z. Phys. Chem. A166, 241 (1933).
K. J. Pedersen,Acta Chem. Scand. 6, 243 (1952).
H. Strehlow,Z. Elekt. 66, 392 (1962).
D. L. Leussing and D. C. Shultz,J. Am. Chem. Soc. 86, 4846 (1964).
G. Ojelund and I. Wadsö,Acta Chem. Scand. 21, 1408 (1967).
D. E. Tallman and D. L. Leussing,J. Am. Chem. Soc. 91, 6253 (1969).
L. Barcza and K. Mihalyi,Z. Phys. Chem. 104, 213 (1977).
O. Forsberg, B. Gelland, P. Ulmgren, and O. Wahlberg,Acta Chem. Scand. 32, 345 (1978).
R. Medancic, I. Kruhak, B. Mayer, and I. Filipovic,Croat. Chem. Acta 53, 419 (1980).
H. Blaschko,Biochem. Z. 158, 428 (1925).
D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall,The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data11, Supplement No. 2 (1982).
E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).
G. C. Allred and E. M. Woolley,J. Chem. Thermodyn 13, 155 (1981).
J. W. Larson, K. G. Zeeb, and L. G. Hepler,Can. J. Chem. 60, 60 (1982).
R. A. Alberty and R. N. Goldberg,Biophys. Chem. (in press).
R. A. Alberty,Biophys. Chem. 42, 117 (1992).
R. A. Alberty,Biophys. Chem. 43, 239 (1992).
S. L. Miller and D. Smith-Magowan,J. Phys Chem. Ref. Data 19, 1049 (1990).
R. C. Wilhoit, inBiochemical Microcalorimetry, H. D. Brown, ed., (Academic Press, New York, 1969).
E. S. Domalski,J. Phys Chem. Ref. Data 1, 221 (1972).
T. Tsuzuki, D. O. Harper, and H. Hunt,J. Phys Chem. 62, 1594 (1958).
A. G. Cole, J. O. Hutchens, and J. W. Stout,J. Phys Chem. 67, 1852 (1963).
P. Pfeiffer and O. Angem,Z. Physiol Chem. 133, 180 (1924).
J. B. Dalton and C. L. A. Schmidt,J. Biol. Chem. 109, 241 (1935).
E. P. K. Hade, Jr., Ph.D. Thesis, University of Chicago (1962).
Y. Nozaki and C. Tanford,J. Biol. Chem. 238, 4074 (1963).
Y. Nozaki and C. Tanford,J. Biol. Chem. 240, 3568 (1965).
Y. Nozaki and C. Tanford,J. Biol. Chem. 245, 1648 (1970).
K. H. Dooley and F. J. Castellino,Biochemistry 11, 1870 (1972).
K. Gekko and S. Koga,Biochim. Biophys. Acta 786, 151 (1984).
M. Abu-Hamdiyyah and A. Shehabuddin,J. Chem. Eng. Data 27, 74 (1982).
C. Jolicoeur, B. Riedl, D. Desrochers, L. L. Lemelin, R. Zamojska, and O. Enea,J. Solution Chem. 15, 109 (1986).
W. Pfleiderer, inPhysical Methods in Heterocyclic Chemistry, Vol. I, A. R. Katritzky, ed., (Academic Press, New York, 1963).
W. D. Good,J. Chem. Eng. Data 17, 28 (1972).
R. Chirico, National Institute for Petroleum and Energy Research, personal communication.
W. B. Collier,J. Chem. Phys. 88, 7295 (1988).
A. Aihara,J. Chem. Soc. Jpn., Pure Chem. Sect. 76, 492 (1968).
R. A. Alberty and R. N. Goldberg,Biochemistry 31, 10610 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tewari, Y.B., Goldberg, R.N. An equilibrium and calorimetric investigation of the hydrolysis of L-tryptophan to (indole + pyruvate + ammonia). J Solution Chem 23, 167–184 (1994). https://doi.org/10.1007/BF00973544
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00973544