Skip to main content
Log in

An equilibrium and calorimetric investigation of the hydrolysis of L-tryptophan to (indole + pyruvate + ammonia)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent equilibrium constants and calorimetric enthalpies of reaction have been measured for the reaction L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate(aq) + ammonia(aq) which is catalyzed by L-tryptophanase. High-pressure liquid-chromatography and microcalorimetery were used to perform these measurements. The equilibrium measurements were performed as a function of pH, temperature, and ionic strength. The results have been interpreted with a chemical equilibrium model to obtain thermodynamic quantities for the reference reaction: L-tryptophan(aq) + H2O(l) = indole(aq) + pyruvate(aq) + NH +4 (aq). At T=25°C and Im=O the results for this reaction are: Ko=(1.05±0.13)×10−4, ΔΓ G°=(22.71±0.33) kJ-mol−1, ΔΓ H°=(62.0±2.3) kJ-mol−1, and ΔΓ S°=(132±8) J-K−1-mol−1. These results have been used together with thermodynamic results from the literature to calculate standard Gibbs energies of formation, standard enthalpies of formation, standard molar entropies, standard molar heat capacities, and standard transformed formation properties for the substances participating in this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Enzyme Nomenclature 1992, E. C. Webb, ed., (Academic Press, San Diego, 1992).

    Google Scholar 

  2. Y. Morino and E. E. Snell,Methods Enzymol. 17A, 439 (1970).

    Google Scholar 

  3. R. S. Phillips,Arch. Biochem. Biophys. 256, 302 (1987).

    PubMed  Google Scholar 

  4. D. K. Steckler, R. N. Goldberg, Y. B. Tewari, and T. J. Buckley,J. Res. Natl. Bur. Stand. 91, 113 (1986).

    Google Scholar 

  5. D. K. Steckler, R. N. Goldberg, Y. B. Tewari, and T. J. Buckley,Computer Software for the Acquisition and Treatment of Calorimetric Data, National Bureau of Standards Technical Note 1224 (U. S. Government Printing Office, Washington, D. C. 1986).

    Google Scholar 

  6. R. N. Goldberg and Y. B. Tewari,Biophys. Chem. 40, 241 (1991).

    Google Scholar 

  7. H. S. Simms,J. Gen Physiol. 11, 629 (1928).

    Google Scholar 

  8. M. M. Rapport, A. A. Green, and I. H. Page,J. Biol. Chem. 176, 1243 (1948).

    Google Scholar 

  9. A. Albert,Biochem. J. 47, 531 (1950).

    Google Scholar 

  10. D. D. Perrin,J. Chem. Soc. 3125 (1958).

  11. J. Hermans, J. W. Donovan, and H. A. Scheraga,J. Biol. Chem.,235, 91 (1960).

    PubMed  Google Scholar 

  12. Y. Nozaki and C. Tanford,J. Am. Chem. Soc. 89, 736 (1967).

    PubMed  Google Scholar 

  13. D. R. Williams, J. Chem. Soc.A 1550 (1970).

  14. P. S. Hallman, D. D. Perrin, and A. E. Watt,Biochem. J. 121, 549 (1971).

    PubMed  Google Scholar 

  15. O. A. Weber and V. L. Simeon,Biochim. Biophys Acta 244, 94 (1971).

    PubMed  Google Scholar 

  16. M. C. Lim, J. Chem. Soc. Dalton Trans. 726 (1978).

  17. D. V. Jahagirdar, B. R. Arbad, T. K. Chondhekar, and S. U. Pankanti,Indian J. Chem. A28, 366 (1989).

    Google Scholar 

  18. F. Rodante,Thermochim. Acta 149, 157 (1989).

    Google Scholar 

  19. F. Rodante and F. Fantauzzi,Thermochim. Acta 144, 75 (1989).

    Google Scholar 

  20. M. G. Khaledi and A. H. Rodgers,Anal. Chim. Acta 239, 121 (1990).

    Google Scholar 

  21. C. L. A. Schmidt, W. K. Appleman, and P. L. Kirk,J. Biol. Chem. 85, 137 (1929).

    Google Scholar 

  22. D. J. Perkins,Biochem. J. 55, 649 (1953).

    PubMed  Google Scholar 

  23. J. L. Meyer and J. E. Bauman, Jr.,J. Chem. Eng. Data 15, 404 (1970).

    Google Scholar 

  24. L. P. Berezina, V. G. Samoilenko, and A. I. Pozigun,Zh. Neorg. Khim. 18, 303 (1973);Russ. J. Inorg. Chem. 18, 205 (1973).

    Google Scholar 

  25. H. Sigel and C. F. Naumann,J. Am. Chem. Soc. 98, 730 (1976).

    Google Scholar 

  26. R. F. Jameson, G. Hunter, and T. Kiss,J. Chem. Soc. Perkin Trans. 2 1105 (1980).

    Google Scholar 

  27. G. Berthon, M. Piktas, and M.-J. Blais,Inorg. Chim. Acta 93, 117 (1984).

    Google Scholar 

  28. K. Matsudo, C. Kanai, M. Takahara, and M. Maki,Nippon Kagaku Kaishi 698 (1985).

  29. N. N. Vlasova and N. K. Davidenko,Zh. Neorg. Khim. 30, 1738 (1985);Russ. J. Inorg. Chem. 30, 988 (1985).

    Google Scholar 

  30. T. Hirokawa, T. Gojo, and Y. Kiso,J. Chromatogr. 369, 59 (1986).

    PubMed  Google Scholar 

  31. M. A. Marini, R. L. Berger, D. P. Lam, and C. J. Martin,Anal. Biochem. 43, 188 (1971).

    PubMed  Google Scholar 

  32. J. Böesken, L. W. Hansen, and S. H. Bertram,Rec. Trav. Chim. 35, 309 (1915).

    Google Scholar 

  33. E. Larsson,Z. Phys. Chem. A166, 241 (1933).

    Google Scholar 

  34. K. J. Pedersen,Acta Chem. Scand. 6, 243 (1952).

    Google Scholar 

  35. H. Strehlow,Z. Elekt. 66, 392 (1962).

    Google Scholar 

  36. D. L. Leussing and D. C. Shultz,J. Am. Chem. Soc. 86, 4846 (1964).

    Google Scholar 

  37. G. Ojelund and I. Wadsö,Acta Chem. Scand. 21, 1408 (1967).

    Google Scholar 

  38. D. E. Tallman and D. L. Leussing,J. Am. Chem. Soc. 91, 6253 (1969).

    Google Scholar 

  39. L. Barcza and K. Mihalyi,Z. Phys. Chem. 104, 213 (1977).

    Google Scholar 

  40. O. Forsberg, B. Gelland, P. Ulmgren, and O. Wahlberg,Acta Chem. Scand. 32, 345 (1978).

    Google Scholar 

  41. R. Medancic, I. Kruhak, B. Mayer, and I. Filipovic,Croat. Chem. Acta 53, 419 (1980).

    Google Scholar 

  42. H. Blaschko,Biochem. Z. 158, 428 (1925).

    Google Scholar 

  43. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall,The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data11, Supplement No. 2 (1982).

  44. E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).

    Google Scholar 

  45. G. C. Allred and E. M. Woolley,J. Chem. Thermodyn 13, 155 (1981).

    Google Scholar 

  46. J. W. Larson, K. G. Zeeb, and L. G. Hepler,Can. J. Chem. 60, 60 (1982).

    Google Scholar 

  47. R. A. Alberty and R. N. Goldberg,Biophys. Chem. (in press).

  48. R. A. Alberty,Biophys. Chem. 42, 117 (1992).

    PubMed  Google Scholar 

  49. R. A. Alberty,Biophys. Chem. 43, 239 (1992).

    Google Scholar 

  50. S. L. Miller and D. Smith-Magowan,J. Phys Chem. Ref. Data 19, 1049 (1990).

    Google Scholar 

  51. R. C. Wilhoit, inBiochemical Microcalorimetry, H. D. Brown, ed., (Academic Press, New York, 1969).

    Google Scholar 

  52. E. S. Domalski,J. Phys Chem. Ref. Data 1, 221 (1972).

    Google Scholar 

  53. T. Tsuzuki, D. O. Harper, and H. Hunt,J. Phys Chem. 62, 1594 (1958).

    Google Scholar 

  54. A. G. Cole, J. O. Hutchens, and J. W. Stout,J. Phys Chem. 67, 1852 (1963).

    Google Scholar 

  55. P. Pfeiffer and O. Angem,Z. Physiol Chem. 133, 180 (1924).

    Google Scholar 

  56. J. B. Dalton and C. L. A. Schmidt,J. Biol. Chem. 109, 241 (1935).

    Google Scholar 

  57. E. P. K. Hade, Jr., Ph.D. Thesis, University of Chicago (1962).

  58. Y. Nozaki and C. Tanford,J. Biol. Chem. 238, 4074 (1963).

    PubMed  Google Scholar 

  59. Y. Nozaki and C. Tanford,J. Biol. Chem. 240, 3568 (1965).

    PubMed  Google Scholar 

  60. Y. Nozaki and C. Tanford,J. Biol. Chem. 245, 1648 (1970).

    PubMed  Google Scholar 

  61. K. H. Dooley and F. J. Castellino,Biochemistry 11, 1870 (1972).

    PubMed  Google Scholar 

  62. K. Gekko and S. Koga,Biochim. Biophys. Acta 786, 151 (1984).

    Google Scholar 

  63. M. Abu-Hamdiyyah and A. Shehabuddin,J. Chem. Eng. Data 27, 74 (1982).

    Google Scholar 

  64. C. Jolicoeur, B. Riedl, D. Desrochers, L. L. Lemelin, R. Zamojska, and O. Enea,J. Solution Chem. 15, 109 (1986).

    Google Scholar 

  65. W. Pfleiderer, inPhysical Methods in Heterocyclic Chemistry, Vol. I, A. R. Katritzky, ed., (Academic Press, New York, 1963).

    Google Scholar 

  66. W. D. Good,J. Chem. Eng. Data 17, 28 (1972).

    Google Scholar 

  67. R. Chirico, National Institute for Petroleum and Energy Research, personal communication.

  68. W. B. Collier,J. Chem. Phys. 88, 7295 (1988).

    Google Scholar 

  69. A. Aihara,J. Chem. Soc. Jpn., Pure Chem. Sect. 76, 492 (1968).

    Google Scholar 

  70. R. A. Alberty and R. N. Goldberg,Biochemistry 31, 10610 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewari, Y.B., Goldberg, R.N. An equilibrium and calorimetric investigation of the hydrolysis of L-tryptophan to (indole + pyruvate + ammonia). J Solution Chem 23, 167–184 (1994). https://doi.org/10.1007/BF00973544

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973544

Key Words

Navigation