Skip to main content
Log in

Volume and heat capacity of model non-aqueous self-assembly systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Blends of immiscible polymers are often stabilized by block copolymers which can form non-aqueous micelles and microemulsions in the liquid polymers. The phase diagrans, apparent volumes and apparent heat capacities of model non-aqueous binary and ternary systems were studied in order to investigate the conditions under which such self-assembly systems could form. 1,2-Hexanediol, which can cosolubilize hexane and ethyleneglycol, forms inverse micelles in hexane and weak microaggregates in ethyleneglycol. Genapol X-060, a commercial alcoholic surfactant containing on the average an aliphatic chain of 13 carbons and 6 oxyethylenes (C13E6), forms microaggregates in poly(ethyleneglycol) 400. These self-assembly systems are strengthen in the presence of a third component which has an affinity for the inner phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Utracki,Polymer Alloys and Blends: Thermodynamics and Rheology (Hanser Pub., New York, 1989).

    Google Scholar 

  2. M. Johnströmer, M. Sjöberg, and T. Wärnheim,J. Phy. Chem. 94, 7549 (1990).

    Google Scholar 

  3. S. E. Friberg and Y. C. Liang, inMicroemulsions: Structure and Dynamics, S. E. Friberg and P. Bothorel eds., (CRC Press, Baton Rouge, N.O, 1989), Chap. 3.

    Google Scholar 

  4. S. Wurzburger, R. Sartorio, V. Elia, and C. Cascella,J. Chem. Soc. Faraday Trans. I 86, 3891 (1990).

    Google Scholar 

  5. S. M. Hajji, M. B. Errahmani, R. Coudert, and R. Durand,J. Phys. Chem. 93, 4819 (1989).

    Google Scholar 

  6. M. Frindi, B. Michels, and R. Zana,J. Phys. Chem. 95, 4832 (1991).

    Google Scholar 

  7. R. Tanaka, S. Toyama, and S. Murakami,J. Chem. Thermodyn. 18, 63 (1986).

    Google Scholar 

  8. R. Tanaka,J. Coll. Interf. Sci. 122, 220 (1988).

    Google Scholar 

  9. J. E. Desnoyers, G. Perron, and A. Roux, inSurfactant Solutions: New Methods of Investigations, R. Zana, ed., (M. Dekker Inc., New York, 1987), Chap. 1.

    Google Scholar 

  10. M. Costas and D. Patterson,J. Chem. Soc. Faraday Trans. I 81, 635 (1985).

    Google Scholar 

  11. L. Andreoli-Ball, D. Patterson, M. Costas, and M. Cáceres Alonso,J. Chem. Soc. Faraday Trans. I 84, 3991 (1988).

    Google Scholar 

  12. T. Hofman and H. Buchowski,J. Chem. Soc. Faraday Trans. I 88, 689 (1992).

    Google Scholar 

  13. A. Liu, K. Pusicha, A. M. Demiriz, and F. Kohler,J. Solution Chem. 20, 39 (1991).

    Google Scholar 

  14. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 6377 (1974).

    Google Scholar 

  15. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  16. J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  17. G. Perron, L. Couture, and J. E. Desnoyers,J. Solution Chem. 21, 433 (1992).

    Google Scholar 

  18. Complete set of tabular data may be purchased fromThe Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa, Canada K1A 0S2.

  19. L. Barta, Z. S. Kooner, L. G. Hepler, G. Roux-Desgranges, and J.-P. Grolier,Can. J. Chem. 67, 1225 (1989).

    Google Scholar 

  20. E. Noreland, B. Gestblom, and J. Sjoeblom,J. Solution Chem. 18, 303 (1989).

    Google Scholar 

  21. J. E. Desnoyers, G. Caron, R. DeLisi, D. Roberts, A. Roux, and G. Perron,J. Phys. Chem. 87, 1397 (1983).

    Google Scholar 

  22. R. Tanaka and A. Saito,J. Coll. Interf. Sci. 134, 82 (1990).

    Google Scholar 

  23. J. E. Desnoyers,J. Surface Sci. and Technol. 5, 289 (1989).

    Google Scholar 

  24. D. Hétu, A. H. Roux, and J. E. Desnoyers,J. Solution Chem. 16, 529 (1987).

    Google Scholar 

  25. J. Lara, G. Perron, and J. E. Desnoyers,J. Phys. Chem. 85, 1600 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perron, G., Côté, JF., Lambert, D. et al. Volume and heat capacity of model non-aqueous self-assembly systems. J Solution Chem 23, 121–133 (1994). https://doi.org/10.1007/BF00973541

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973541

Key Words

Navigation