Siberian Mathematical Journal

, Volume 23, Issue 3, pp 372–379 | Cite as

Maps in a family of planes in the projective space

  • L. Z. Kruglyakov


Projective Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. Z. Kruglyakov, “Generalized pseudofocal families of d planes in PN,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 78–84 (1971).Google Scholar
  2. 2.
    S. E. Karapetyan, “Projective-differential geometry of two-parameter families of lines and planes in four-dimensional space,” Izv. Akad. Nauk Arm. SSR,15, No. 2, 25–43 (1962).Google Scholar
  3. 3.
    V. I. Bliznikas, P. I. Vashkas, Z. Yu. Lupeikis, and Yu. I. Shinkunas, “Review of the scientific works of K. I. Grintsevichyus,” Tr. Geometr. Sem. VINITI, Vol. 5, 7–53 (1974).Google Scholar
  4. 4.
    L. Z. Kruglyakov, “The differential geometry of families of multidimensional planes in a projective space. I,” Sib. Mat. Zh.,17, No. 6, 1295–1307 (1976).Google Scholar
  5. 5.
    V. V. Kaizer and L. Z. Kruglyakov, “On tangent spaces and characteristics of higher order of Pfaffian manifolds of multidimensional planes,” Geometr. Sb., No. 14 (Tr. Tomsk. Univ.,255), 47–81 (1974).Google Scholar
  6. 6.
    L. Z. Kruglyakov and L. V. Rybchenko, “Pseudofocala-families of lines in the (a+2)-dimensional projective space,” Geometr. Sb., Vol. 13 (Tr. Tomsk. Univ.,246), 65–86 (1973).Google Scholar
  7. 7.
    L. Z. Kruglyakov and N. P. Chupakhin, “On pseudofocal familiesa-families of 2-planes in Pa+3,” Geometr. Sb., Vol. 16 (Tr. Tomsk. Univ.,263), 53–64 (1975).Google Scholar
  8. 8.
    L. Z. Kruglyakov and B. S. Sushnikov, “Pseudocongruences of d-planes in P2d+2,” Geometr. Sb., Vol. 15 (Tr. Tomsk. Univ.,258), 54–78 (1975).Google Scholar
  9. 9.
    N. R. Shcherbakov, “The geometry of 1-pseudofocala-families of two-dimensional planes,” Geometr. Sb., Vol. 20 (Tr. Tomsk. Univ.), 31–39 (1979).Google Scholar
  10. 10.
    N. R. Shcherbakov, “On a 1-pseudofocal 3-family of 2-planes in a projective plane,” Geometr. Sb., Vol. 17, Izd. Tomsk. Univ., Tomsk., 47–58 (1976).Google Scholar
  11. 11.
    L. Z. Kruglyakov, A. G. Mizin, and E. S. Nikitina, “Complexes of index one of planes in the space P5,” Gemeotr. Sb., Vol. 18 (Tr. Tomsk. Univ.), 47–58 (1977).Google Scholar
  12. 12.
    L. Z. Kruglyakov, “Fundamentals of the theory of complexes of d-planes in a projective space,” Geometr. Sb., Vol. 20 (Tr. Tomsk. Univ.), 3–15 (1979).Google Scholar
  13. 13.
    S. E. Karapetyan, “Projective-differential geometry of families of multidimensional planes. II,” Izv. Akad. Nauk Arm. SSR,16, No. 5, 3–32 (1963).Google Scholar
  14. 14.
    R. N. Shcherbakov, Fundamentals on the Method of Exterior Forms and of Ruled Differential Geometry [in Russian], Tomsk Univ. (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • L. Z. Kruglyakov

There are no affiliations available

Personalised recommendations